Convexity, concavity and inflexion points of a function
The second derivative. Convex and concave Jfunction.
Sufficient condition of concavity ( convexity ) of a function.
Inflexion point.

The second derivative. If a derivative J"(x) of a function f( x ) is differentiable in the point ( x, ), then its
derivative is called the second derivative of the function J(x)in the point ( x, ) and denoted asf" (x).

A function f(x ) is called convex in an interval (a,b), if a graph of the function f( x ) is placed in this
Interval lower than a tangent line, going through any point (x,, /(%) ), % €(a, b ).

A function f(x ) is called concave in an interval ( 4, b ), if a graph of the function f( x ) is placed in this
interval higher than a tangent line, going through any point (x,, /(%) ), x, €(a,b).

Sufficient condition of concavity ( convexity ) of a function,
Let a function f( x ) be twice differentiable ( i.e. it has the second derivative )in an interval (a, b ), then: if
S f"(x)>0 for any x€( a, b), then the function f( x ) is concave in the interval (a,b);if f"(x) < O for
- anyx€(a,b), then the function f( x ) is convex in the interval (a,b). -

If a function changes a convexity to a concavity or vice versa at passage through some point, then this point
is called an inflexion point an inflexion point. Hence it follows, that if the second derivative J" exists in an
inflexion point x, , then /" (x)=0.. '

Exam p le. Consider a graph of the function y=x": _

This function is concave at x > 0 and convex at x < 0. In fact, y."= 6x, but 6x> 0 at x <‘0 and_
6x <0 at x <0, hence, y”> 0 at x* 0 and y” < 0 at x <0, hence it follows, that the funct;ony -
x? is concave t;t x> O’and convex at x < 0. Then the pointx = -0 is the lpﬂcxnon point of the
function y = x>,
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CHAPTER 2

Sets, Functions, Relations

2.1. Set Theory

2.1.1. Sets. A set is a collection of objects, called elements of the
set. A set can be represented by listing its elements between braces:
A=1{1,2,3,4,5}. The symbol € is used to express that an element is
(or belongs to) a set, for instance 3 € A. Its negation is represented by
&, e.g. 7¢ A. If the set is finite, its number of elements is represented
|A|, e.g. if A={1,2,3,4,5} then |A| = 5.

Some important sets are the following:

. N={0,1,2,3,---} = the set of natural numbers.!
Z={--,-3,-2,—1,0,1,2,3,--- } = the set of integers.
Q = the set of rational numbers.

R = the set of real numbers.

C = the set of complex numbers.

O 00 N0

Is S is one of those sets then we also use the following notations:2

1. St = set of positive elements in .S, for instance
={1,2,3,---} = the set of positive integers.
2. S~ = set of negative elements in S, for instance
~={-1,-2,-3,---} = the set of negative integers.

3. 5* = set of elements in S excluding zero, for instance R* = the
set of non zero real numbers.

Set-builder notation. An alternative way to define a set, called set-
builder notation, is by stating a property (predicate) P(z) verified by
exactly its elements, for instance A= {z € Z | 1 < £ < 5} = “set of

2When working with strings we will use a similar notation with a different

[ INote that N includes zero—for some authors N = {1,2,3,---}, without zero.
.J 5 2
meaning—be careful not to confuse it.

19



2.1. SET THEORY 20

integers z such that 1 < z < 5"—l.e.: A ={1,2,3,4,5}. In general:
A= {z € U] p(z)}, where U is the universe of discourse in which the
predicate P(z) must be interpreted, or A = {z | P(z)} if the universe
of discourse for P(z) is implicitly understood. In set theory the term
universal set is often used in place of “universe of discourse” for a given
predicate.?

Principle of Extension. Two sets are equal if and only if they have
the same elements, i.e.:

A=B =Vz(zr€A—zeB).

Subset. We say that A is a subset of set B, or A is contained in
B, and we represent it “A C B”, if all elements of A are in B, e.g., if
A= {a,b,c} and B = {a,b,c,d,e} then A C B.

A is a proper subset of B, represented “A C B”, if A C B but
A # B, i.e., there is some element in B which is not in A.

Empty Set. A set with no elements is called empty set (or null set,
or void set), and is represented by 0 or {}.

Note that nothing prevents a set from possibly being an element of
another set (which is not the same as being a subset!). For instance
if A= {1,q,{3,t},{1,2,3}} and B = {3,t}, then obviously B is an
element of A, i.e., B € A.

Power Set. The collection of all subsets of a set A is called the
power set of A, and is represented P(A). For instance, if A = {1,2,3},

then
P(A) = {0, {1}, {2}, {8}, {1, 2}, {1,3}, {2,3}, 4}
Ezercise: Prove by induction that if |A| = n then |P(4)| = 2".

Multisets. Two ordinary sets are identical if they have the same
elements, so for instance, {a,a,b} and {a,b} are the same set because
they have exactly the same elements, namely a and b. However, in
some applications it might be useful to allow repeated elements in a
set. In that case we use multisets, which are mathematical entities
similar to sets, but with possibly repeated elements. So, as multisets,
{a,a,b} and {a,b} would be considered different, since in the first one
the element a occurs twice and in the second one it occurs only once.

3Properly speaking, the universe of discourse of set theory is the collection of
all sets (which is not a set).
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2.1.2. Venn Diagrams. Venn diagrams are graphic representa-
tions of sets as enclosed areas in the plane. For instance, in figure 2.1,
the rectangle represents the universal set (the set of all elements con-
sidered in a given problem) and the shaded region represents a set A.
The other figures represent various set operations.

FIGURE 2.1. Venn Diagram.

FIGURE 2.2. Intersection AN B.

F1GURE 2.3. Union AU B.
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FIGURE 2.4. Complement A.

- FIGURE 2.5. Difference A — B.

FIGURE 2.6. Symmetric Difference A @ B.

2.1.3. Set Operations.

1. Intersection: The common elements of two sets:
ANB={z|(z€ A)A(z € B)}.
If AN B =, the sets are said to be disjoint.
2. Union: The set of elements that belong to either of two sets:
AUB={z|(z€ A)V(z € B)}.
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3. Complement: The set of elements (in the universal set) that do
not belong to a given set:

A={zecl|z¢A}.

4. Difference or Relative Complement: The set of elements that
belong to a set but not to another:

A-B={z|(xecAA(z¢B)}=ANnB.

5. Symmetric Difference: Given two sets, their symmetric differ-
ence is the set of elements that belong to either one or the other
set but not both.

A®B={z|(z € A) & (z € B)}.
It can be expressed also in the following way:
A@B=AUB—-ANB=(A-B)U(B-A).

2.1.4. Counting with Venn Diagrams. A Venn diagram with

n sets intersecting in the most general way divides the plane into 2"

- regions. If we have information about the number of elements of some

. portions of the diagram, then we can find the number of elements in

each of the regions and use that information for obtaining the number
of elements in other portions of the plane.

Example: Let M, P and C be the sets of students taking Mathe-
’ matics courses, Physics courses and Computer Science courses respec-
—2242 tively in a university. Assume |M| = 300, |P| = 350, |C| = 450,
|[MNP|=100,  MNC|=150, |PNC|=175 |MNPNC|=10. How

many students are taking exactly one of those courses? (fig. 2.7)

:
=

FIGURE 2.7. Counting with Venn diagrams.

We see that |(MNP)—(MNPNC)| = 100—10 = 90, |(MNC)—(MnN
PNC)| =150—10 = 140 and |(PNC) - (M NPNC)| = 75— 10 = 65.
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Then the region corresponding to students taking Mathematics courses
. only has cardinality 300—(90+10+140) = 60. Analogously we compute
s 2 the number of students taking Physics courses only (185) and taking
Computer Science courses only (235). The sum 60 + 185 + 235 = 480

is the number of students taking exactly one of those courses.

7 -
D ‘ /\oﬂ:ﬁ) —+ 2.1.5. Properties of Sets. The set operations verify the follow-
. . ing properties:

1. Associative Laws:
AU(BUC)=(AuB)ucC
AN(BNC)=(AnB)nC

2. Commutative Laws:

AUB=BUA
ANnB=BNA
3. Distributive Laws: ,
AU(BNC)=(AUB)N(AUC)
CAN(BUC)=(ANB)U(ANC)
4. Identity Laws:

Aub=A
AnU=A
5. Complement Laws:
AUA=
AnA=0
6. Idémpotent Laws:
AUA=A
ANA=A
7. Bound Laws:
AulUu=1U
ANG=0
8. Absorption Laws:
AU(ANB)=A
AN(AuB)=A
9. Involution Law: _
A=A
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2.1. SET THEORY 25

10. 0/1 Laws:
P="U
U=0
11. DeMorgan’s Laws:
AUB=ANB
ANB=AUB

] r ) ~——22.1.6. Generalized Union and Intersection. Given a collec-

tion of sets A;, As, ..., Ay, their union is defined as the set of elements
that belong to at least one of the sets (here n represents an integer in
the range from 1 to N):

N
U4dn=4104U---UAy ={z|3n(z € 4,)}.

n=1

Analogously, their intersection is the set of elements that belong to all

- the sets simultaneously:

© N
: ﬂAnzAlﬂAzﬂ---ﬂAN={a:|Vn(m €A)}.
n=1
These definitions can be applied to infinite collections of sets as well.
For instance assume that S, = {kn | k =2,3,4,... } = set of multiples
of n greater than n. Then

U Sa=8USsu8U---={4,6,8,9,10,12,14,15,... }
n=2 .
= set of composite positive integers.

2.1.7. Partitions. A partition of a set X is a collection § of non

overlapping non empty subsets of X whose union is the whole X. For
instance a partition of X = {1,2,3,4,5,6,7,8,9,10} could be

8= {{1a 2,4, 8}7 {3: 6}7 {57 7,9, 10}} .

Given a partition S of a set X, every element of X belongs to exactly
one member of 8.

Ezample: The division of the integers Z into even and odd numbers
is a partition: § = {E,Q}, where E={2n |n€Z},0={2n+1|n¢€
Z}.



2.1. SET THEORY 2

Ezample: The divisions of Z in negative integers, positive integers
and zero is a partition: 8 = {Z*, Z~, {0}}.

2.1.8. Ordered Pairs, Cartesian Product. An ordinary pair
{a, b} is a set with two elements. In a set the order of the elements is
irrelevant, so {a,b} = {b,a}. If the order of the elements is relevant,
then we use a different object called ordered pair, represented (a,b).
Now (a,b) # (b,a) (unless a = b). In general (a,b) = (¢/,V) if a = o’
and b=1"V.

Given two sets A, B, their Cartesian product A x B is the set of all
ordered pairs (a,b) such that a € A and b € B:
Ax B=1{(a,b) | (a € A)A (b€ B)}.

Analogously we can define triples or 3-tuples (a, b, ¢), 4-tuples (a, b, ¢, d),
..., n-tuples (a1,as,...,a,), and the corresponding 3-fold, 4-fold,.. .,
n-fold Cartesian products:

A]_XAzX"'XAn:
{(a1,02,...,a,) | (a1 € A1) A(az € AJ)A--- A (an € Ap)}.

If all the sets in a Cartesian product are the same, then we can use
an exponent: A?> = Ax A, A3= A x A x A, etc. In general:
xA.

(n times)

A" =Ax Ax

An example of Cartesian product is the real plane R?, where R is
the set of real numbers (R is sometimes called real line).
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2.2. Functions

2.2.1. Correspondences. Suppose that to each element of a set
A we assign some elements of another set B. For instance, A = N,

B = Z, and to each element z € N we assign all elements y € Z such
that y* = z (fig. 2.8).

FIGURE 2.8. Correspondence z — /7.

This operation is called a correspondence.

2.2.2. Functions. A function or mapping f from a set A to a set
B, denoted f : A — B, is a correspondence in which to each element
z of A corresponds exactly one element y = f(z) of B (fig. 2.9).

FIGURE 2.9. Function.

Sometimes we represent the function with a diagram like this:

f:A>B AL B
or

Ty Ty

A-



2.2. FUNCTIONS 28
For instance, the following represents the function from Z to Z
defined by f(z) =2z + 1:
f:Z—17Z
z— 2z 41

The element y = f(z) is called the image of z, and z is a preimage
of y. For instance, if f(z) = 2z + 1 then f()=2-7+1=15. The
set A is the domain of f, and B is its codomain. If A’ C A, the image
of A' by f is f(A) = {f(z) | z € A}, e, the subset of B consisting
of all images of elements of A’. The subset f (A) of B consisting of
all images of elements of A is called the range of f. For instance, the
range of f(z) = 2z + 1 is the set of all integers of the form 2z + 1 for
some integer z, i.e., all odd numbers.

Ezample: Two useful functions from R to Z are the following:

1. The floor function:
|| = greatest integer. less than or equal to z.
For instance: |2] =2;(2:3] =2, || =38, |-2.5] = -3.

2. The ceiling function:
[z] = least integer greater than or equal to z.
For instance: [2] =2, [2.3] =3, [7] =4, [-2.5] = 2.
Ezample: The modulus operator is the function mod : ZXxZ* — Z

defined:

z mod y = remainder when z is divided by y.
For instance 23 mod 7 = 2 because 23 = 3-74+2,59 mod 9 =5 because
59 =6-9 45, etc.

Graph: The graph of a function f: A — B is the subset of A x B
defined by G(f) = {(z, f(z)) | = € A} (fig. 2.10).

2.2.3. Types of Functions.

1. One-to-One or Injective: A function f : A — B is called one-
to-one or injective if each element of B is the image of at most
one element of A (fig. 2.11):

V7' € A, f(z) =f@)=>z=2".
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FiGURE 2.10. Graph of f(z) = 2.

For instance, f(z) = 2z from Z to Z is injective.

FIGURE 2.11. One-to-one function.

..Onto or Surjective: A function f : A — B is called onto or
surjective if every element of B is the image of some element of

A (fig. 2.12):
Vy € B, Jx € A such that y = f(z).

For instance, f(z) = z? from R to R* U {0} is onto.

=

FIGURE 2.12. Onto function.

3. One-To-One Correspondence or Bijective: A function f: A —
B is said to be a one-to-one correspondence, or bijective, or a

A\ —
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bijection, if it is one-to-one and onto (fig. 2.13). For instance,
f(z) = z + 3 from Z to Z is a bijection.

=

A B

FiGURE 2.13. Bijection.

2.2.4. Identity Function. Given a set A, the function 1, : A —
A defined by 14(z) = z for every z in A is called the identity function
for A.

2.2.5. Function Composition. Given two functions f: A — B
and g : B — C, the composite function of f and g is the function
go f:A— C defined by (g o f)(z) = g(f(z)) for every z in A:

gof
/"—\
5 B g C
2 b y=f(z) ———> 2=g(y)=g(f(z))

For instance, if A= B = C = Z, f(z) = £+ 1, g(z) = z?, then
(g0 f)(z) = f(z)* = (z+1)* Also (fog)(z) = g(z) +1 =" +1 (the
composition of functions is not commutative in general).

Some properties of function composition are the following:

1. If f : A — B is a function from A to B, we have that fols =
lBOfo.

2. Function composition is associative, i.e., given three functions
ALBSchp,
we have that ho (go f) =(hog)o f.

- \a ~
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Function iteration. If f : A — A is a function from A to A, then
it makes sense to compose it with itself: f2 = fo f. For instance, if
f:Z > Zis f(z) =2z + 1, then f%(z) = 22z + 1) + 1 = 4z + 3.
Analogously we can define f3 = fofof, and soon, f* = fo(» tmes)o £,

2.2.6. Inverse Function. If f : A — B is a bijective function, its
inverse is the function f~! : B — A such that f~(y) = z if and only

if f(z) =y

For instance, if f : Z — Z is defined by f(z) = z + 3, then its
inverse is f~(z) =z — 3.

The arrow diagram of f~! is the same as the arrow diagram of f
but with all arrows reversed.

A characteristic property of the inverse function is that f~lof =14
and fo f™' =1p.

2.2.7. Operators. A function from A x A to A is called a binary
operator on A. For instance the addition of integers is a binary oper-
ator + : Z X Z — Z. In the usual notation for functions the sum of
two integers z and y would be represented +(z,y). This is called prefiz
- notation. The infiz notation consists of writing the symbol of the bi-
nary operator between its arguments: z+y (this is the most common).
There is also a postfiz notation consisting of writing the symbol after
the arguments: zy+.

Another example of binary operator on Z is (z,y) — z - y.

A monary or unary operator on A is a function from A to A. For
instance the change of sign z +— —z on Z is a unary operator on Z. An
example of unary operator on R* (non-zero real numbers) is z — 1/z.
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2.3. Relations

2.3.1. Relations. Assume that we have a set of men M and a set
of women W, some of whom are married. We want to express which
men in M are married to which women in W. One way to do that is by
listing the set of pairs (m, w) such that m is a man, w is a woman, and
m is married to w. So, the relation “married to” can be represented
by a subset of the Cartesian product M x W. In general, a relation R
from a set A to a set B will be understood as a subset of the Cartesian
product A x B, i.e.,, R C A x B. If an element a € A is related to an
element b € B, we often write a R b instead of (a, b) € R.

The set .
{a € A|aRb for some b € B}

is called the domain of R. The set
{b € B|aRb for some a € A}

is called the range of R. For instance, in the relation “married to”
above, the domain is the set of married men, and the range is the set
of married women.

If A and B are the same set, then any subset of A x A will be a
binary relation in A. For instance, assume A = {1,2,3,4}. Then the
binary relation “less than” in A will be:

<a={(z,y) e AxA|lz <y}
= {(172)a (17 3)7 (1:4)a (2: 3)7 (274)7 (374)} .

Notation: A set A with a binary relation R is sometimes represented
by the pair (A4,R). So, for instance, (Z, <) means the set of integers
together with the relation of non-strict inequality.

2.3.2. Representations of Relations.

Arrow diagrams. Venn diagrams and arrows can be used for repre-
senting relations between given sets. As an example, figure 2.14 rep-
resents the relation from A = {a,b,¢,d} to B = {1,2, 3,4} given by
R ={(a,1),(b,1),(c,2),(c,3)}. In the diagram an arrow from z to y
means that z is related to y. This kind of graph is called directed graph
or digraph.
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FIGURE 2.14. Relation.

Another example is given in diagram 2.15, which represents the
divisibility relation on the set {1,2,3,4,5,6,7,8, 9}.

FIGURE 2.15. Binary relation of divisibility.

Matriz of a Relation. Another way of representing a relation R
from A to B is with a matrix. Its rows are labeled with the elements
of A, and its columns are labeled with the elements of B. Ifa € A
and b € B then we write 1 in row a column b if aR b, otherwise we
write 0. For instance the relation R = {(a,1), (b,1), (¢, 2), (c,3)} from
A = {a,b,c,d} to B={1,2,3,4} has the following matrix:

1 2 3 4
a {1 000
b 11000
c 10110
d \0 0O 0OO

9.3.3. Inverse Relation. Given a relation R from A to B, the
inverse of R, denoted R, is the relation from B to A defined as

bR 1o < aRb.
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For instance, if R is the relation “being a son or daughter of”, then
R~1 is the relation “being a parent of”.

2.3.4. Composition of Relations. Let A, B and C be three sets.
Given a relation R from A to B and a relation 8 from B to C, then
the composition 8§ o R of relations R and 8 is a relation from A to C
defined by:

a (8 o R) c & there exists some b € B such that aRb and bSc.

For instance, if R is the relation “to be the father of”, and § is the
relation “to be married to”, then S8 o R is the relation “to be the father
in law of”.

2.3.5. Properties of Binary Relations. A binary relation R on
A is called:

1. Reflexive if for all z € A, z Rz. For instance on Z the relation
“equal to” (=) is reflexive.

2. Transitive if for all z,y,z € A, Ry and y R z implies z R 2.
For instance equality (=) and inequality (<) on Z are transitive
relations.

3. Symmetric if for all z,y € A, zRy = yRz. For instance on Z,
equality (=) is symmetric, but strict inequality (<) is not.

4. Antisymmetric if for all £,y € A, xRy and y Rz implies z = .

For instance, non-strict inequality (<) on Z is antisymmetric.

2.3.6. Partial Orders. A partial order, or simply, an order on a
set A is a binary relation “<” on A with the following properties:

1. Reflexive: forallz € A, z < z.
2. Antisymmetric: (z X YAy S z)=>z=1.
3. Transitive: (z S YYA(y % 2)=> 7 < 2.

Examples:

1. The non-strict inequality (<) in Z.

2. Relation of divisibility on Z*: a|b < 3t, b = at.

Y
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3. Set inclusion (C) on P(A) (the collection of subsets of a given
set A).

Egercise: prove that the aforementioned relations are in fact partial
orders. As an example we prove that integer divisibility is a partial
order:

1. Reflexive: a =al => ala.

2. Antisymmetric: a|b = b = at for some ¢ and bla => a = bt’ for
some #. Hence a = att’, which implies ' = 1 = t' =¢~'. The
only invertible positive integer is 1, so t = t=1=>a=0b

3. Transitive: a|b and b|c implies b= at for some ¢ and ¢ = bt' for
some ¢/, hence c = att/, i.e., alc.

Question: is the strict inequality (<) a partial order on Z?

Two elements a,b € A are said to be comparable if either z < y
or y < x, otherwise they are said to be non comparable. The order
is called total or linear when every pair of elements z,y € A are com-
parable. For instance (Z, <) is totally ordered, but (Z+,]), where “|”
represents integer divisibility, is not. A totally ordered subset of a par-
tially ordered set is called a chain; for instance the set {1,2,4,8,16,...}
is a chain in (Z%,]).

2.3.7. Hasse diagrams. A Hasse diagram is a graphical represen-
tation of a partially ordered set in which each element is represented
by a dot (node or vertex of the diagram). Its immediate successors are
placed above the node and connected to it by straight line segments. As
an example, figure 2.16 represents the Hasse diagram for the relation
of divisibility on {1,2,3,4,5,6,7,8,9}.

Question: How does the Hasse diagram look for a totally ordered
set?

2.3.8. Equivalence Relations. An eguivalence relation on a set
A is a binary relation “~" on A with the following properties:

1. Reflezive: forallz € A,z ~ z.

2. Symmetric: x ~y=y ~ T.
3. Transitive: (x ~ yY)A(y ~ 2) =1 ~ 2.

Yy
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FIGURE 2.16. Hasse diagram for divisibility.

For instance, on Z, the equality (=) is an equivalence relation.

Another example, also on Z, is the following: z = y (mod 2) (“z is
congruent to y modulo 2”) iff z—y is even. For instance, 6 = 2 (mod 2)
because 6 — 2 = 4 is even, but 7 3 4 (mod 2), because 7 —4 = 3 is not
even. Congruence modulo 2 is in fact an equivalence relation:

1. Reflexive: for every integer z, z—z = O is indeed even, soz =z
(mod 2).

2. Symmetric: if z = y (mod 2) then z — y = t is even, but
y — z = —t is also even, hence y = z (mod 2).

3. Transitive: assume z = y (mod 2) and y = z (mod 2). Then
r—y=tand y—z = u are even. From here, z —z = (z —y) +
(y — z) =t + u is also even, hence z = z (mod 2).

2.3.9. Equivalence Classes, Quotient Set, Partitions. Given
an equivalence relation ~ on a set A, and an element z € A, the
set of elements of A related to z are called the equivalence class of
z, represented [z] = {y € A | y ~ z}. Element z is said to be a
representative of class

[z]. The collection of equivalence classes, represented A/~ = {[z] |
z € A}, is called quotient set of A by ~.

Ezercise: Find the equivalence classes on Z with the relation of
congruence modulo 2. '

One of the main properties of an equivalence relation on a set A
is that the quotient set, i.e. the collection of equivalence classes, is
a partition of A. Recall that a partition of a set A is a collection of



g
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non-empty subsets A;, Az, Az, ... of A which are pairwise disjoint and
whose union equals A:

1. AinA; =0for i # 7,
2. U, An= A.

Ezample: in Z with the relation of congruence modulo 2 (call it
“~sg”), there are two equivalence classes: the set E of even integers and
the set ©@ of odd integers. The quotient set of Z by the relation “~y”
of congruence modulo 2 is Z/ ~y = {E,0}. We see that it is in fact a
partition of Z, because ENQ =0, and Z=EUQ.

Ezercise: Let m be an integer greater than or equal to 2. On Z
we define the relation z = y (mod m) < m|(y — z) (i.e., m divides
exactly y — z). Prove that it is an equivalence relation. What are the
equivalence classes? How many are there?

Ezercise: On the Cartesian product Z x Z* we define the relation
(a,b)R(c,d) & ad = bc. Prove that R is an equivalence relation.
Would it still be an equivalence relation if we extend it to Z x Z?
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