

· ¿ceo sus ciella · IL Yx, y \ X , Y \ A, B \ ER $d\chi \epsilon$ c) (a+B) x = dx + Bx (d.B)x): d. (Bx) E) a (x+y) = dx+dy OYFIRER => 1R.X=X perstie (X,+,) is does inc out I per ciestist ánérálsteil ászá R SJ conta el stipal x ny is R J is Sul study is it RI-RXRXXX Richeles (int) secret est on the R" decises, $\forall \chi, \zeta \in \mathbb{R}^n$ $x+y=(x, x_2, x_n)+(y, y_2, \dots, y_n)$ = (x,+y,, x2+y2, --, xn+yn) dx = d(x, x, -, xn) = a +, d x, -, d xn grusipa (R", +, a) csi Opn=(0,0,-,0) A(+) cslpc^n 1/2/ x = (-1, -1, -1, -1)

- Fig. 1x1 -0; i=(1,2,3,-,n) ⇒ x; = 0; i=(1,2,3,-n) gristi (la, +,) of e [1] (=) x = 0 , x = 0 , x = 0 CULL Sas 10 chip <=> x(0,0,,,0)=0R" 3) ||ax|| = \(\) | |ax|| $x: [x,] \in \mathbb{I}_{\infty}$ · \$ |a||x:1-|a|.1121 ICX ER 12,1 CCy ciel-21 ciel for de ciel xy elos 4) 11x+911: 3/1x+41? E(1x+191) × 1x:1 + × 1y:1 x+y={xi+y,ji>1 dd : d { x : } ;] : [dx .] 7 1x, 311 = 11x/1/1/2/= acilped Germille 1x1-Sup |x,1 * : 4 مان المال دالة نام P. 110 (R" 1111) · la de pérals p sign whice is Se * ر مان المان Useslipo X-C[a,b]SUTE أن عالم الالكالية : x > |x | = \ \frac{x}{2} 1/2/11 = max (x(+)) 11x211-5/2(+)/d+ repials (R"/II) in Ar Pr E Leis (X) 11.11) ci iP Pi 13 P 1 (X | 1 | 1) 2 8 10 11 - 12 13 14 115 16 15 Alamal رث ل الم إعداد، كلمة لجمالي

- 2 - JUS C. 19/ < K1 5.5 2 1 be = ce al A del 1 5 31 Ripersaio X yet sipall D(x,x)50 وزون الم براي ا $\langle \cdot, \rangle \times \times \longrightarrow \mathbb{R}$ (x,y), (x,y) (=) x, 00 ; i=1,2,-h * بعق هذه لا القالم الماقة (X, 12, X, 1: (0,0,0) YXY,ZEX, YXER (=> x:0R" 1) < 1,1 > > 0 c) < x, x > - 0 (=) x = 0x () (x,y) = (y,x) (3, 1) + (3, 1) + (3, 1) + (3, 1) = = = (x,Z,+y,Z) (x, y, z) = (x, y) + (x, z) o) < ax, y> = a < x, y> = < x, ay = = x, z, + = y, Z, (X (6, 2) is Joe juice وهاء ها دفاه . : (x, Z) + (y, Z) is an place, (x, y, Z) : ~ x (y, +Z) allibly R" Le city Ulic $\langle , \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ (" x 3 : < x > () = (x, y) + (x, z) 0) (dx, y) = [(ax,)y, (R" < , >) wi = 51 cololo de la colo alsopalla pois-31 21 * YXY, ZER" YZER = = a (x y) =a < n, 1)> (1, dy) : d(x, y) sexice 1) < x, x > \(\frac{2}{2} \times 2 \) > 0 [c] (<,>, "A) egzgle (Bb).

lin Legis que des des que sis Jegisol Vicionia VI Rt allile des XI > ||X|| : V(X,X) des she shed V US 121 : = 500 والداا حولد من جداد راغلى . غيرًا تعقى لمالة التالمة. 1/x+y1/2+1/x-y1/2 YAYEV, YAER - 2 [1 x12 + 11y12] D(xx) 70 => 1(x,x) 70 => ||x|| > 0 2) 1x = 0 (=> V(x,x) =0 SdiSt, Leisland dels slags (=) (x, X)=0 Myrapishii Ferell (=) x = 0y 0:1=0's1 = Euro 1s 3) | dal - V(an an) Vac(4) X=RZSI. ESUS LIN = | a | \(\lambda , \lambda \) ولنف ملم لالقائلة ابداع : الما 4) 1x+y1 - 1<x+y,x+y> أثبت أنزدلة جدد أفلى > 11x + 4/12 : < x + y , x + y > عر دالة جاء مل اثنا ما الله الله على م 14/15-8-15-0 + (x, y) + (y, x) 14/15-8-15-0 + (x, y) ~(1,1) , y (1,-1) E R2 : pi (1,x)+2(1,y)+(y,y) 112+ 41=11 (1=1) + (1=1) < (1, x) + 2 (x, x) (< y, y)+(y,y) $\frac{1}{\|x+y\|^2} = \frac{1}{\|x\|} =$ => ||x+y||2 ((|x|| +|y||)2 11-x-y||=||(1,1)-(1,-1)|| =11(0,2)11 = 101+12 => || x + y || < || x || + || y || $||x-y||^2 = 4$ تحقوع شاع عوان Alamal

$$||x+y|| = \left(\frac{\pi}{|x|} (x_i + y_i)^2\right)^{\frac{1}{2}}$$

$$\Rightarrow ||x+y||^2 = \frac{\pi}{|x|} (x_i + y_i)^2$$

$$= \frac{\pi}{|x|} (x_i^2 + 2x_i y_i + y_i^2)$$

$$||x+y||^2 = \frac{\pi}{|x|} x_i^2 + 2 \frac{\pi}{|x|} x_i y_i + \frac{\pi}{|x|} y_i^2$$

$$||x+y||^2 = \frac{\pi}{|x|} x_i^2 + 2 \frac{\pi}{|x|} x_i y_i + \frac{\pi}{|x|} y_i^2$$

$$||x+y||^2 = \frac{\pi}{|x|} x_i^2 + 2 \frac{\pi}{|x|} x_i y_i + \frac{\pi}{|x|} y_i^2$$

$$||x||^2 + 2 \frac{\pi}{|x|} x_i y_i + \frac{\pi}{|x|} y_i^2$$

$$= (x_i x_i) + 2 \frac{\pi}{|x|} + ||x||^2$$

$$= (x_i x_i) + 2 \frac{\pi}{|x|} + ||y||^2$$

$$= ||x||^2 + 2 \frac{\pi}{|x|} ||y|| + ||y||^2$$

موين : (· · ·) فضاء بنهي على التاليات الحفيفية واللامدودة x = {x;} : i = 1 - n عند الغضاء الدالة التالية: 11211 = Sup |x:1 أثبت أن (١٠٠٠) مضاء منظم. Yx, y El . YXER : 131 1) ||x|| = Sup |xi| >0 2) ||x||=0 = Sup |x:|=0 (=) |x; =0 : i eN* X= 0e0 3) || x x || = Sup | x x; | = 1x1 sup 1x;1 = |x|. ||x||

4 11x+y11 = Sup 1x;+4;1 * iEN* : 1x;+4;1] Lote 1 so in 1 /1 com 12: +4:1 < 12:1+ 14:1 < sup 12:1 + Sup 14: 1x;+y:] _ Lde] se Sup | x; | + Sup | y; | = 1 Le] من 4 و 4 من الناء Sup Noc; + y: | Sup | x: 1 + sup | y: 1 ⇒ 11x+y11 < 11x11 + 11y11 (= توين \$ X=C[a,b] مبوعاة الدوال المسترة والمقيقة على [d.b] نعوف على هذه المه على المواجة ؟ 1/21 = max |2(t) tela,b] الله ان (۱۱ ۱۱ X) فضاء منظم. تمسند استعده المتواجه ضرمولدة سنعاء داخلي

$$\forall x,y \in X = C[\alpha,b] \quad \forall x \in R$$

$$|) ||x|| = \max_{t \in [\alpha,b]} |x(t)| \geq 0$$

$$t \in [\alpha,b]$$

$$|x(t)| = 0 \quad \Rightarrow \quad \max_{t \in [\alpha,b]} |x(t)| = 0$$

$$\Rightarrow \quad |x(t)| = 0 \quad \Rightarrow \quad t \in [\alpha,b]$$

$$\Rightarrow \quad |x(t)| = |x(t)| = |x(t)|$$

$$= \max_{t \in [\alpha,b]} |x(t)| = |x(t)|$$

$$= |x(t)| = \max_{t \in [\alpha,b]} |x(t)|$$

$$= |x(t)| = \max_{t \in [\alpha,b]} |x(t)|$$

$$= \max_{t \in [\alpha,b]} |x(t)| + y(t)|$$

$$\leq \max_{t \in [\alpha,b]} |x(t)| + y(t)|$$

$$\leq \max_{t \in [\alpha,b]} |x(t)| + \max_{t \in [\alpha,b]} |y(t)|$$

$$\leq \max_{t \in [\alpha,b]} |x(t)| + \max_{t \in [\alpha,b]} |y(t)|$$

$$\leq \max_{t \in [\alpha,b]} |x(t)| + \max_{t \in [\alpha,b]} |y(t)|$$

$$||x+y|| \leq ||x|| + ||y||$$

$$\frac{1}{1} + \frac{1}{1} + \frac{1}{1}$$

||x|| = max |sint| = 1 $[0,2\pi]$ 1/2/12=1 1/41 = max / 4(t) = max /2 = 2 $|| || || ||^2 = 4$ ⇒ l2= 2[1+4]=10 $l, \pm l$. ماواة متوازير الأضلاع بمرمققة. إذا "المتراهة عربولدة منا بداء دا فلي . الفضاء المترعياة لتكت لا مع علة ما ولنأ منذ الجداء الديكاري ل للا ولنعرف على عذا الجداء الدالة: d:XxX -> R" (x,y) -> d(x,y) عب تعفق المدوط الآتية: Yx, y, Z EX d (x,y) 70 21 d (x,y)=0 (x= y 3 d(x,y) = d(y,x) $d(x,y) \leq d(x,z) + d(z,y)$ ند يه هذه الدالة بد الله مسافلة ، وندي (x , d) ففاء سري

ملامقة؛ يمكن تعريف أخرمن دالة ماغة على الموعة نفسها. مثالة لغرف على الفضاء المتمر " الدالة d: R"x R" -> R" (x,y) -> d(x,y) = 2 |x;-y; أغت أن عده الدالة دالة ما فه. TId(x14) = = 1/2: -4: 170 27 d(x14) = 0 (=> [x; -4; |=0 Mr and (=> 1x; -y; =0 : i=1--n 1=> 1:-4:=0 :1=1-n (=> n=y 3 d (n,y) = = | | x; - y; | = 1 | y; -x; | = d (y,x) 47 d (x,y) = = 1 | x; -y; 1 = = |xi-Zi+Zi-yi|

|n:-Z:+Z:-Y:| < |n:-H:|+|E:-Y:| ∑ | 12: - y; | < ½ | 12: - #1 + ½ | Z; - y; | ⇒d(x,y) ≤d(x, +)+d(z,y) alè i (R", d) siste il 157. all sales كانظيم على فضاء مبته ١٤ سرف متركا له بالماواة التالية: d(x,y) = 11x-y11

Subject:

المحتويم العلمية : المتعادة المتعادة والمنظم .

. Itier F

10

0

0

0

-

50

50

17

9

1

0

0

0

ا تعاريف بيولومية.

راً منذ نا في الدالمطة بالمحاضرة السابقة: المحاضرة السابقة: المحاضرة السابقة: الله منا المحاضرة السابقة: المحاضرة العاضرة السابقة: المحاضرة المحاض

مبرهناة ؛ ليكن له متر حا على فضاء متهم لل ومولد من نظيم عند تذ تكونا الشروط التالية معقفة ؟

 $\forall x, y, z \in X$ $\forall x \in R$ $\exists d(x+z,y+z) = d(x,y)$ $\exists d(xx,xy) = |x|d(x,y)$

 $\forall x, y, z \in X$, $\forall x \in R$ $\exists t \in Y$ 1) d(x+z, y+z) = ||x+z-y-z|| = ||x-y|| = d(x,y)

2) d(x x, ix y) = ||x x - x y|| = ||x (x - y)||= |x| ||x - y||= |x| d(x, y) أَ ﴿ اللهِ اللهُ اللهُ

على مثال على عضاء متري غيرمه لد من نظيم . example المتناكيات (المحدودة أو الفر محدودة) ولفرور

 $d(x,y) = \sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{|x_{i}-y_{i}|^{s}}{1+|x_{i}-y_{i}|}$

أنبت أنه له عيد اله مساغة ولكن غير مو لدة من نظيم.

 $\exists d (x,y) = \underbrace{\underbrace{\frac{1}{2^{i}}}_{1=1} \underbrace{\frac{1}{2^{i}}}_{1+|x_{i}-y_{i}|} = 0$

 $2 | d(x,y) = 0 \implies \frac{2}{|x|} \frac{1}{|x|} \frac{|x_i - y_i|}{|x_i - y_i|} = 0$

<-> |x; - y; | = 0

1= y:

 $31 d(x,y) = \frac{2}{1} \frac{1}{2^{1}} \cdot \frac{|x_{i}-y_{i}|}{|+|x_{i}-y_{i}|}$

 $= \frac{2}{2} \frac{1}{2^{i}} \frac{1y_{i} - x_{i}1}{1 + |y_{i} - x_{i}|} = d(y_{i}x)$

1 = 1 - - - n -

Vie N*

$$4 d(x,z) \leq d(x,y) + d(y,z)$$

 $d(x,z) = \sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{1x_{i}-z_{i}!}{1+|x_{i}-z_{i}|}$

$$|x_i - z_i| = |x_i - y_i + y_i - z_i|$$

$$|x_i - z_i| = |x_i - y_i + y_i - z_i|$$

$$0 < \alpha < \beta$$

$$\alpha + \alpha \beta \leq \beta + \alpha \beta$$

$$\alpha (1+\beta) \leq \beta (1+\alpha)$$

$$\alpha \leq \frac{\beta}{1+\alpha}$$

$$\alpha \leq \frac{\beta}{1+\beta}$$

$$\frac{|\chi_{i}-Z_{i}|}{1+|\chi_{i}-Z_{i}|} < \frac{|\chi_{i}-Y_{i}|+|Y_{i}-Z_{i}|}{1+|\chi_{i}-Y_{i}||Y_{i}-Z_{i}|}$$

$$= \frac{|\chi_{i}-y_{i}|}{1+|\chi_{i}-y_{i}|+|y_{i}-z_{i}|} = \frac{|\chi_{i}-y_{i}|}{1+|\chi_{i}-y_{i}|+|y_{i}-z_{i}|}$$

$$\frac{|\chi_{i}-y_{i}|}{1+|\chi_{i}-y_{i}|}+\frac{|y_{i}-z_{i}|}{1+|y_{i}-z_{i}|}$$

$$\frac{2}{1+|\chi_{i}+Z_{i}|} \leq \frac{1}{2^{i}} \frac{|\chi_{i}-\chi_{i}|}{1+|\chi_{i}+Z_{i}|} \leq \frac{2}{1+|\chi_{i}-\chi_{i}|} \frac{1}{1+|\chi_{i}-\chi_{i}|} \leq \frac{1}{1+|\chi_{i}-\chi_{i}|} \frac{1}{1+|\chi_{i}-\chi_{i}|} \frac{1}{1+|\chi_{i}-\chi_{i}|} \leq \frac{1}{1+|\chi_{i}-\chi_{i}|} \frac{1}{1+|\chi_{i}-\chi_$$

$$\Rightarrow d(x,y) \leq d(x,y) + d(y,Z)$$

$$\Rightarrow d(x,y) \leq d(x,y) + d(y,Z)$$

$$\Rightarrow d(x,y) \leq d(x,y) + d(y,Z)$$

900

(dieb) : example

ليكن له متركا "على فضاء متبه له X و مولد من نظيم ولفوف الدالة:

$$d'(x,y) = \frac{0}{1+d(x,y)} x = y$$

$$\frac{1+d(x,y)}{0} x \neq y$$

$$\frac{1+d(x,y)}{0} = \frac{1}{1+d(x,y)} =$$

 $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \right) \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2}$

bbagh

بعض التعاريف الطبولومية في الفضاء الإقلم عيد " المالوف، " ١٠ الكرة المفتوعة : " الكرة المؤتوعة : " الكرة المفتوعة : " المفتوعة : " الكرة المفتوعة : " المفتوعة : " المفتوعة : " الكرة المفتوعة : " المفتوعة : " الكرة المفتوعة : " الكرة المفتوعة : " المفتوعة : " الكرة المفتوعة : " المفتوعة :

 $N(\chi_0, Y) = \{\chi : \chi \in \mathbb{R}^n, d(\chi, \chi_0) = \|\chi - \chi_0\| < Y\}$

ه نوی الره المفتوعات مجال مفتوع $|\chi-\chi_0| < Y$ $|\chi-\chi_0| < Y$ $-Y < \chi-\chi_0 < Y$ $|\chi-Y| < \chi < \chi_0 + Y$ $|\chi-Y| < \chi < \chi_0 + Y$

5

T

• في 2° تمثل الكرة الهفتو مه جموعة النقاط الواقعة داخل الدائرة عدا المحيط. في 2° تمثل الكرة الهفتو مه مجموعة النقاط الواقعة داخل الكرة عدا المحيط.

B(xo, r) = [xoxeR" od(x, y) = 11x-x, 11 < r } delib of 1 12

 $\left[N(x_{o},r)\subseteq B(x_{o},r)\dots]$

 $\exists N(x_0, r) \subseteq M \iff x_0 \int_{\frac{1}{2}}^{x_0} M$ $\exists 12.5, 3.5 \subseteq M$

M

bagh

 $x + M \subseteq R^{"}$ $x + M \subseteq R^{"}$ x + M $x + M \subseteq R^{"}$ $x + M \subseteq R^{"}$ $x + M \subseteq R^{"}$ x + M

ملاحظة في إن المجهوعان ه . " هما مقلمتان ومفتوعان بان واحد . المن واحد . المن واحد . المن مفتوعة .

م النقطة الداخلية و لتكن \mathbb{R}^{N} النقطة الداخلية و لتكن \mathbb{R}^{N} النقطة داخلية في \mathbb{R}^{N} الذا وعد جوار ل م محتوى عن من \mathbb{R}^{N} المنافقة و اخلية في \mathbb{R}^{N} المنافقة في \mathbb{R}^{N} المنافقة و المنافقة و المنافقة و \mathbb{R}^{N} المنافقة و المنافقة و \mathbb{R}^{N} المنافقة و المنافقة و المنافقة و \mathbb{R}^{N} المنافقة و ونومز لمجموعة المناط الداخلية بـ \mathbb{R}^{N} .

Sabbagh

(مفلق ارمفتوج) معال هو مجال مفتوج (مفلق ارمفتوج) M =] 1,2] M° =] 1,2[

النقطة الحدية (البخع ، التواكم) \mathbb{Z} لكن \mathbb{Z} \mathbb{Z}

2

51

90

90

500

5

9

 $N(\chi_{0}, \Gamma) \cap M - \{\chi_{0}\} + \delta$ $N(\chi_{0}, \Gamma) - \{\chi_{0}\} \cap M \neq 0$ $N(\chi_{0}, \Gamma) \cap M \neq \emptyset$ $N(\chi_{0}, \Gamma) \cap M \neq \emptyset$

Sabbagh

了多,5[2]19] 3 . 5 [N [0, I [U{2} \ 2] = 8

·] = , 7 [N [0,1[V{2}] \{2} =] =] = , 1[+ 8 2 ليت مدة لأنه بو مد موار ما ولا الخالة.

و علا هظه ؛ في ميم التاريف نقول يو مد جوال والله عن تقريف النقطة الحدية و المحيطية و العلاصقة. مع مم u u u u

8 + M = R" Lite 8 debs 1 abreil 18 نقول عن الا عن عرف الم إذا كا نعق الله إذا كا نعق Telde les tellos of Mens of Muller les lille V N(x0,1) : N(20.1) NM ≠8 N(xo,r) nM° + 8 2 و نوعز لمجه عن النقاطع المحيطية لـ M بالرعز Mb

/ ملاحظة ، أطواف المجال المغلق هي نقاط محيطية ./

6

6

6

90

90

50

5

-

Date: // Subject:....

Ø + M ⊆ R" النقطة الملاصقة ؛ لتكن "F النقطة الملاصقة ؛

نعق ل عن " R ع م ما تا نعظة ملاصقة ل M لا عاذا كان نقاطع أعيد عوار له مع المجموعة Mأحاوع الخالية YM(xo,r): N(xor) NM +8 نوعز للنفطة الملاصقة به M

/ نسجة: كل نفظة لجمع هي علاصقة . /

8 + M CR" istil : al jaid To نعة ل عن ١٤٠١ عن الم نعولة 3 N(x.r) & N(x.r) / M = {x.3

نتجة و كل منسزلة غير هدية. كل هدية غير منسزلة.

المعموعة المحدودة

isel si "R = M + B fif receco sile ac Apl Mac god Legy N(x, xo) $\exists N(x,x_s) & M \subseteq N(x,x_s)$

Kalima-ALSalih, Ola-Aldalati

Syria math -

تىلى 4

• المتالي*ات فيا* الفضاء الإقليد عيا الأ

المتالية هي دالة

 $\rightarrow f(m) = \chi_m$

 $\mathcal{R}^{n} = (\mathcal{X}_{1m}, \mathcal{X}_{2m}, \dots, \mathcal{X}_{2m})$ $\mathcal{R}^{n} = (\mathcal{X}_{1m}, \mathcal{X}_{2m}, \dots, \mathcal{X}_{2m}, \dots, \mathcal{X}_{2m})$ $\mathcal{R}^{n} = (\mathcal{X}_{1m}, \mathcal{X}_{2m}, \dots, \mathcal{X}_{2m}, \dots, \mathcal{X}_{2m}, \dots, \mathcal{X}_{2m})$

· تقارب متالية في الم

نقول عن المتالية إلا المراج في الم بأنها متقاربة من مرج الم المراج ا

₹ > 0, ∃n_ε ∈ N*, m > n_ε 8||x_m - x|| < ε

 $\left(\sum_{i=1}^{n}(\chi_{im}-\chi_{i})^{2}\right)^{\frac{1}{2}} \leq \varepsilon$

 $\lim_{m\to\infty}X_m=\chi$

ونكت عدلا

10

100

Car

A

(IL

i=1--n m x; m R w {Xim 3 me N

¥ € > 0, ∃n ∈ N*, m > n = "||xm - x|| < €

 $||\chi_m - \chi|| = \left(\sum_{i=1}^n (\chi_{im} - \chi_i)^2\right)^{\frac{1}{2}} < \varepsilon$

 $\Rightarrow \sum_{i=1}^{n} (x_{im} - x_i)^2 < \xi^2$

 $(\chi_{1m} - \chi_1)^2 + (\chi_{2m} - \chi_2)^2 + \dots - + (\chi_{nm} - \chi_n)^2 < \varepsilon^2$ مجوع مدوداً صفر من 2 اَعي كل مدمنها أصفر من 2 ح

 $\Rightarrow (\chi_{im} - \chi_{i})^{2} < \varepsilon^{2} \quad (i=1-n).$

 $\Rightarrow |\chi_{in} - \chi_i| < \varepsilon \quad (i = 1 - n).$

3> | 1x-mix | 3 3in = mi 3in F, 0<3∀ $\implies \lim_{n\to\infty} \chi_{im} = \chi_i \quad (i=1-n)$ Date : / /

Subject:

$$(i=1,2,-n)$$
 منقاربه من $(i=1,2,-n)$ من $(i=1,2,-n)$ منقاربه من $(i=1,2,-n)$ من $(i=$

$$\exists n_{ie} \in \mathbb{N}^{*} : m \geq n_{ie}$$

$$| x_{im} - x_{i}| < \frac{\varepsilon}{\sqrt{n}}$$

$$|\chi_{\text{IM}} - \chi_{,|}| < \frac{\varepsilon}{\sqrt{n'}} \implies (\chi_{\text{IM}} - \chi_{,|})^2 < \frac{\varepsilon^2}{N}$$

$$|\chi_{2m} - \chi_2| < \frac{\varepsilon}{\sqrt{2!}} = (\chi_{2m} - \chi_2)^2 < \frac{\varepsilon^2}{\eta}$$

$$|\chi_{nm} - \chi_n| < \frac{\varepsilon}{\sqrt{n'}} \Longrightarrow (\chi_{nm} - \chi_n)^2 < \frac{\varepsilon^2}{n}$$

ر الطرست،
$$(\chi_{im} - \chi_i)^2 < n \frac{\varepsilon^2}{n} = \varepsilon^2$$
 $(\chi_{im} - \chi_i)^2 < n \frac{\varepsilon^2}{n} = \varepsilon^2$
 $(\chi_{im} - \chi_i)^2)^{\frac{1}{2}} < \varepsilon$

$$||x_m - x|| < \varepsilon$$

$$||\chi_{m} - \chi|| < \varepsilon \implies \lim_{m \to \infty} \chi_{m} = \chi$$

 $n_{\varepsilon} = m\alpha X (n_{1\varepsilon}, n_{2\varepsilon}, - n_{n\varepsilon})$ $m = m\alpha X (n_{1\varepsilon}, n_{2\varepsilon}, - n_{n\varepsilon})$ $k = m\alpha X (n_{1\varepsilon}, n_{2\varepsilon}, - n_{2\varepsilon})$ $k = m\alpha X$

88 نتائج، آ إذا وجدت نهائي المتنالية في R فهر وهيرة.
ق كل متنالية متقاربة في R تكون محدودة.

ق الشرط اللازم و الكاهن عمر تتقارب المتالية [xm]

هن ۶ في الم هوأن جوي أي هوار له بميع مناصر الم الميع مناصر

المنالية باستثاء عدد محدود منها.

اذا كانت [الم عن الله متالية متقاربة من عد في الم وكانت الله متالية متقاربة من عد في الم فان: الله متالية متقاربة من الله في الله ف

 $\lim_{m \to \infty} (x_m \mp y_m) = x \mp y$

قا الشرط اللازم والكافي كي تكون المجوعة "M ⊆ R" معلقة هوأن =

يَكُونَ لِكُ مَتَالِيةِ مَقَارِبِهِ فِي M مِهَا يَةِ فِي M

Sim 1 Mar of 1

3 - 1 × - × 1

2

A.

مبرهنة (بدون برهان)، عِرْمَةِ مَمْ تَكُونِ مِتَقَارِيةً مِنْ نَفُ مِن الْمَنْصِرِ عِنْ الْمُنْصِرِ عِنْ الْمُنْصِرِ عِنْ ملا مفلة ؟ ماذا و هدت متاليت موسيس من متالية على المرسيس من منالية المرسيس من منالية المرسيس من مناطقة المرسيس [(-1) m] = -1 ;+1 ;-1,+1 المنالية منارّ بهه متباعدة /
المنالية منارّ بهه منارّ بهه متباعدة /
المنالية منارّ بهه منارّ بهه منارّ به مناسق المنالية المناسق ا مبرهنة في كل متالية متقاربة في ١٦ هي متالية كوشمير. الإثبات، لنفرض أن المراس متالية في الم متقاربة من x في الم $\|\chi_{m} - \chi_{\ell}\| = \|\chi_{m} - \chi + \chi - \chi_{\ell}\|$, Hatai $\leq ||\chi_m - \chi|| + ||\chi_\ell - \chi||$ $<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}$ => [x,] == 5 ذلك منا على الم الله خلاء m.l > n Sabbagh

D	ate: // POD Subject:
3	
1	و تعريف الفضاء التام ، (ضم فقط).
3	نقول عن فضاء مانه تام إذا كانت كل مثالية كوشميد هي متالية متقاربة.
	- إن "R الفضاء المتريب هو فضاء تام.
3	
3	مبر هنه (دون برهان ۱٬۸) ، عن الفضاء المترب R كل متالية كوشميد
3	عي متالية منالية عارية.
3	
3	
	88 التغطية: لتكن ؟ مجوعة ما ميث "S = \$ ولتكن الله الله الما الما الما الله الله الله
3)	[الانتهة أوغرالنتهة) علم المعامة من المجوعات (الهنتهة أوغرالنتهة)
	نعم ل عند لا بأنها تقطيه لا ع عادًا تعقق الشرط ،
2)	$S \subseteq U U_i$ و تكون هذه النفطية مفتوعه إذا كانت كل من الماله عبارة عن $i \in I$ مفتوعه أ $i \in I$ مفتوعه مفتوعه أ $i \in I$ مفتوعه مفتوعه أن الماله الماله مفتوعه أن الماله المال
9	وتلوب هذه النفطية مفتوعة إذا كانت كل من المهاهي عبارة عن
2	IEL LIE, 48 gills I Cass
2	إلى المنظبة المفتوعة نفس تعريف البعظبة لكن
1	تكنب أن لما هما عة من البيموعات المفتوعة.

8 التراص ؛ نقول عن "S ما أنا مجوعة متراصة إذا المتوت كل تعظيه مفتو مه ل ك تعظيه منتهية ل ك

 $\bigvee_{j=1}^{r} u_{j} \subseteq \bigvee_{i \in I} u_{i}$

مثال: (غم غير مطلوب ^^) لتكن (عم غير مطلوب ^ ^) A= [a,a, -a,] ولتكن

0

D

1

A. .

1

2

أَنْ إِلَا إِنْ الْمُعْلَقِهِ مَعْلَمَ مَعْلَمَ مَعْلَمَ مَعْلَمَ مَعْلَمَ مَعْلَمَ مَعْلَمَ مَعْلَمَ اللهِ ال

الإنبائدة فعا أن ما تفظية مفهم ملة لـ A

: العظية العظية . A حب تقريف النقطية .

 $\alpha, \in A$ $\exists u', \in \bigcup u; : \alpha, \in u';$ $\alpha, \in A$ $\exists u'_2 \in \bigcup u; : \alpha_2 \in U'_2$

 $A = \alpha_1 U \alpha_2 - U \alpha_m \in U U_j \subseteq U U_i$ $U = U U_j \subseteq U U_i$

نسِّها مطلوبة ، كل مِعومة منتهية هي مجوعة متراصة. مرهنة (دون برهان) ، [هاين بوريل] ، كل مجوعة مغلقة ومحدودة هي متراصة.

Syria math...

Sabbagh

عادة كليمة المالح - علا الرالات.

تخلیل 4 د.هدی مشاط

المحاضرة (لسادساة

المحتوير العلمير:

آ يعض التعاريف.

ح الدوال الحقيقية لعدة متفير لحد .

الم مرونات.

. تعريف المجمعة المترابطة:

نقول عن "R = S + B با كا غير سرابطة إذا وجدت مجموعات

مفتوحتان وغيرخاليتان ٧٠٧ بحيث،

unv = 0

u U V = S

- ند عو ١١ و ٧ بفصلا ٥.

- وإذا لم تعقق هذه الشروط عنرئذ ندعم ٤ بالمجموعة المترابطة.

ملا مظة: - إن المعومة الوهيرة العنصر هي مجموعة مترابطة. المجموعة الخالية هي مجموعة مترابطة.

مبرهنة (دون برهان)؛ نقول من S = R بأنها مترابطة إذا وفقط إذا كانت S مجال (مفتوح ،أو مفلق أو نصف مفتوح). Date: / /

3 C C

S =]0,1[V/] 3/5[ماله u = 70,1[V =]3,5[

لمِفَقَ النُوطِ وَا حَمَاعِ الْمِالْسِ لَا يُعِطِي مِإِلَّ وَمِنْهِ } غير مترابطة.

 $S_2 = [0,1] - [0,\frac{1}{2}] = [\frac{1}{2},1]$ لا يفق الشروط (W = V) و V = S) ومنه بي مرابطة.

> S,= [0,1]U[1,3] = [0,3] دى مرابطة.

تعريف القطعة المستقبة عن الله (مم) $L = \{ x + t (y - x) : t \in [0,1] \}$ فإذ ا كان لدينا مجوعة من النقاط

 $\chi_1,\chi_2,\chi_3, ----\chi_m$

x, x, im all al que la deball on L. رع ، عدي القطعة المستقيمة الواصلة .سيد عمل الم

ن عي القطعة المستقبة الواصلة. سن به الما مي أنه

10

1

3

4

2

5

0

2

Î-

5

10

2 m 9 2 in Jos | Line | Line | Lm-1] Find with 1 m - 1 Juin

000 - 1/1-

حرب منه عن الشرط اللازم و الكاعز عمد تكون S = S = 8 مترابطة من من من الما من الما من المان أن نصل بين من المان أن نصل بين أي نقطس من كا بخط مضلع يصل سن هاس النقطس يقع بأكمله في 3.

> میرهنه ، (بدون برهان ^۱۸) ان "R هو فضاء مترابط.

مبرهنة ؛ (عائباتها غير مطلوب للاطلاع ١٠٠) ان A. R معديمان مفتوعمان و معلقمان بأن واحد.

لنفرض جد لل" ما نهما غير مفتوحتين ومفلفيتن بآن واحد او لتكن كا مجموعة مفتوعة ومفلقة بآن و اهد و مختلفة عن A. R

SER

ا ا ا ا کانتاا کا مفتوعه dalah R"IS عقلغه 8 ستاح اغار ا ۱۳ مفتوحة

A STATE OF THE STA

NE)

100

T

THE

O

0

13

تعریف مجموع و ضرب و قسمه و الدوال المقتقیه العرة متغیرات ، $f: S \subseteq R^n \longrightarrow R$ $f: S \subseteq R^n \longrightarrow R$ 9: $T \subseteq R^n \longrightarrow R$

ولتكن م يقطه مدية له ١٦٨ ا

f+9: $S \cap T \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$ $\varkappa \longmapsto (f+9)(\varkappa) = f(\varkappa) + g(\varkappa)$

 $f.9: SNT \subseteq R" \longrightarrow R$ $\chi \longmapsto (f.9)(\chi) = f(\chi).$ $g(\chi)$

 $\frac{f}{g} : SNT \setminus [x:g(x)=0] \longrightarrow R$ $x \longmapsto \frac{f}{g}(x) = \frac{f(x)}{g(x)}$

CXIATE -

How - All 20

$$f: S \subseteq R" \longrightarrow R$$

$$\lim_{x \to x} (f+9)(x) = A+B$$

$$\lim_{x \to x} f(x) = A \iff \lim_{x \to x} f(x) = A \Leftrightarrow \forall x > 0, \exists x > 0$$

$$0 < \| \chi - \chi_0 \| < \delta,$$

$$\Rightarrow |f(x)-A| < \frac{\varepsilon}{2}$$

$$\lim_{x\to\infty} 9(x) = B \iff \forall \varepsilon > 0, \frac{\varepsilon}{2} > 0, \exists s_2 > 0,$$

$$0 < ||x - x_0|| < \delta_2$$

$$\Rightarrow |9(x) - \beta| < \frac{\varepsilon}{2}$$

$$|f(x)-A+g(x)-B| \leq |f(x)-A|+|g(x)-B| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

D

65

Date : Subject: _ 7) D $\left|\frac{1}{9(x)} - \frac{1}{B}\right| = \left|\frac{B - 9(x)}{9(x) \cdot B}\right| < \frac{\varepsilon}{|B| \cdot |9(x)|}$ 0 D $|B| \ge |B - 9(n) + 9(n)|$ 9 $\leq |B-9(x)| + |9(x)|$ (18-9(2)) < E (1) < 4) () \Rightarrow $|B| < \varepsilon + |g(n)|$ 3 $|B| - \varepsilon < |9(x)|$ 3 0 من لا لدنا أن ٥ $\left|\frac{1}{9(x)} - \frac{1}{B}\right| < \frac{\varepsilon}{|B| \cdot |9(x)|}$ 0 $\left[\frac{1}{9(\pi)} < \frac{1}{18! - \epsilon}\right] < \frac{\epsilon}{18!} \cdot \frac{1}{18! - \epsilon}$ 0 前 بماأن ع اختياري نختاره ١١٥ = ٤ O 0 $\left|\frac{1}{9(x)} - \frac{1}{B}\right| < \frac{1}{2} + \frac{1}{|B|} = \frac{1}{|B|} = \frac{\epsilon}{1}$ 8> 10x-x01 >0,0< 8E,0< 34 $\Rightarrow \left|\frac{1}{9} - \frac{1}{R}\right| < \varepsilon'$ $\frac{1}{2} \lim_{n \to \infty} \frac{1}{9} = \frac{1}{B}$

إعدادة كليمة الصالح - ناريمان علم

Sylvia math -

& (in Eso :5

JHL g & B. A. H. K.

Lames Hally de a com

. والمحتوى العامية: آلال وظيفة.

الاسترار المنتظم.

 $f: R^2 - [(0,0)] \longrightarrow R$ وظیفه و ترین و طیفه و $(x,y) \mapsto f(x,y) = \frac{x \cdot y}{x^2 + y^2}$

 $f_2(x,y) = \frac{\sin(x,y)}{x^2 + y^2}$

أثبت أن ليس للدالة نإية عذ (0.0)

• $f_1(x,y) = \frac{\chi \cdot y}{\chi^2 + y^2}$ $\frac{\chi^2 + y^2}{\chi^2 + y^2}$

 $\left\{\frac{1}{n}, \frac{1}{n}\right\} \xrightarrow[n \to \infty]{(0,0)}$

 $\left[\begin{array}{c} \frac{1}{n}, \frac{2}{n} \right] \xrightarrow[n \to \infty]{} (0,0)$

1

$$\lim_{n\to\infty} f\left(\frac{1}{n}, \frac{2}{n}\right) = \lim_{n\to\infty} \frac{\frac{2}{n^2}}{\frac{1}{n^2} + \frac{4}{n^2}} = \frac{2}{5}$$

$$\lim_{n\to\infty} f\left(\frac{1}{n}, \frac{2}{n}\right) + \lim_{n\to\infty} f\left(\frac{1}{n}, \frac{2}{n}\right) = \lim_{n\to\infty} \frac{2}{n^2}$$

$$(2,1) \mapsto (0,0) = \frac{2}{n} = 2$$

•
$$f_2(x,y) = \frac{Sin(x,y)}{x^2 + y^2}$$

$$\left\{ \left(\frac{1}{n}, \frac{1}{n} \right) \right\} \xrightarrow{n \to \infty} (0.0)$$

$$\left[\left(\frac{1}{n},\frac{2}{n}\right)\right] \xrightarrow[n \to \infty]{} (0,0)$$

$$f\left(\frac{1}{n}, \frac{1}{n}\right) = \frac{\sin \frac{1}{h^2}}{\frac{2}{n^2}}$$

$$\lim_{n \to \infty} f\left(\frac{1}{n}, \frac{1}{n}\right) = \lim_{n \to \infty} \frac{\sin \frac{1}{n^2}}{2 \cdot \frac{1}{n^2}} = \frac{1}{2}$$

$$f\left(\frac{1}{n}, \frac{2}{n}\right) = \frac{S \ln \frac{2}{m^2}}{\frac{5}{n^2}}$$

$$\lim_{n\to\infty} f\left(\frac{1}{n}, \frac{2}{n}\right) = \lim_{n\to\infty} \frac{\sin\frac{2}{n^2}}{\frac{5}{2} \cdot \frac{2}{n^2}} = \frac{2}{5}$$

$$\lim_{n\to\infty} f\left(\frac{1}{n}, \frac{1}{n}\right) \neq \lim_{n\to\infty} f\left(\frac{1}{n}, \frac{2}{n}\right)$$

ليت لدالة نإية عنوما (0,0) -> (0,0) ليت

٥٥٥- لا سترار الدوال الحقيقية لعرة متغيرات-٥٠٥

(+ L + 10) 11

 $f: S \subseteq R^n \longrightarrow R$ with the first form $f: S \subseteq R^n \longrightarrow R$

ولتكن x و نقول عن الدالة f أنامستمرة في النقطة مع من S

إذا وفقط إذا تحقق الشرط التالميه ،

8>11, x-x,11, 0<8 E, 0<3∀

 $\Rightarrow |f(x) - f(x_0)| < \varepsilon$

و تكون الدالة f مستمرة على على إذ ا و فقط إذا كانت مستمرة فيا

كل نقطة من نقاط ٥.

مبرهنات ، (بدون برهان)

f:s = R" -> R > 0

ولتكن كري نقول عن f با نه متر مي م إذا وفقط لحذا قابل ائے جوار VL(،x) موار UL،x. حدث ایا کانت

· V يَا يَا بِهِ f(x) نَافِ x ∈ U ∩ S

21

4

N.

 $\lim_{x\to x_0} f(x) = f(x_0)$

تغرض أن

2

1

Te

5

T

2

8

D

2)

2

(2)

8 > 110x-x11 > 0 & 0 < 8 E. 0 < 3 Y

 $\Rightarrow |f(x) - f(x_0)| < \varepsilon$

نمن الحاليد ، الحالة الأولميد ، مد = عد

 $|f(x)-f(x_0)|=|f(x_0)-f(x_0)|=0<\varepsilon$

وهذامحققه.

الحالة الثانية : ١٤ عباش و"محققة من تعريف الناية.

 $\forall \varepsilon > 0, \exists \varepsilon > 0, \|x - x_0\| < \varepsilon$

 $\Rightarrow |f(x) - f(x_o)| < \varepsilon$

الملاعظة: نستنتي من المبرهنة :

تَكُونَ } مستمرة في 3 رو ي نقطة مدية

عند تذيمكن التبديل بين الدالة والناية

 $\lim_{n\to\infty} f(n) = f \lim_{n\to\infty} n = f(n_0)$

ملا مُظَّاةً ، لَا يَحق لَنا أستعدام النَّايَة بالاسترار عند نقطة (نابة من اليمين = النابة من السار = الصورة)

والأواد كانت النقطة التي ندرس الاستمرار عندها نقطة مدية.

Date: / /

Subject: _____

مسرهنه [بدون برهان] ،

راذا کان
$$f: S \subseteq R^{n} \longrightarrow R$$
 مترة بالفظة م

Wast Plant the way to

$$x \mapsto (f+g)(x) = f(x)+g(x)$$

2)
$$f.9:SNT \subseteq R \longrightarrow R$$

$$\chi \mapsto (f \cdot g) (\chi) = f(\chi) \cdot g(\chi)$$

3)
$$\frac{f}{g}$$
 8 SNT - [x ; $g(x) = 0$] $\longrightarrow \mathbb{R}$

$$\chi \mapsto \left(\frac{f}{g}\right)(\chi) = \frac{f(\chi)}{g(\chi)}$$

$$S \subseteq R^n \xrightarrow{f} f(S) \subseteq R \xrightarrow{g} R$$

2

a)

3

(4)

(1)

CA

$$f(x) = g(f(x))$$

$$x \longrightarrow (9 \circ f)(x) = 9(f(x))$$

مرهنة [القِمة الوسطمنه] ،

This $f(x) < \propto f(y)$ and.

B ∈ S , f(B) = ×

ج نقول عن ع بأنها محدودة من الأدني إذا كان مداها (٤٠٠) جدودة من الأدني.

س نعقول عن f محدودة إذا كانت f محدودة من الأعلى ومن الأدني.

الدي الحديدة كل قيمة من $\chi \in f$ بحيث $|f(\chi)| < 2$ عدد $|f(\chi)| < 2$ متقوها.

 $f: S \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$ تعریف الاسترارالمنتظم الم سترة بانتظام علی S_{2} اذا و فقط إذا تحقق الشرط S_{3}

 $\begin{aligned}
\forall \varepsilon > 0, \exists \delta(\varepsilon) > 0, ||\chi_1 - \chi_2|| < \delta \\
\Rightarrow |f(\chi_1) - f(\chi_2)| < \varepsilon \\
\forall \chi_1, \chi_2 \in \delta \end{aligned}$

Subject: ____

مبرونه (بدون برهان) ، ۱۹ مستردة على ۶ عند نذ ، مبرونه و م مستردة على ۶ عند نذ ، مبروسه

ا) على المارة بانتظام على S.

2) } تدرك (تبلغ) مده الأعلى و مده الأدنى.

نتا بَحْرَة آ تركيب دوال مسترة بانتظام هي دالة مسترة بانتظام. ح كادالة مسترة بانتظام هي دالة مسترة .

١ عيرمترة فهي غيرمترة بانتظام،

الاستعرار على مجوعة متراصة هي مسترة بانتظام.

f:[-1,1] ---> R

مثال ا

T

9

9

(

(4)

 $\chi \mapsto f(\chi) = \chi^2 + \chi - 1$

هل الدالة مسترة بانتظام.

الحلي [الما-] مغلقة ومعدودة فهي متراصه

الدالة f متوة على [١٠١-] لأن جمع وطرح دوال متوة هيدالة متوة م والأستوار على متعراصة هي مستوة بإنتظام.

﴿ منظلت معدودة فهي متراصة ﴿ وَ عَدودة فهي متراصة).

Date: // 🧣 🕒 🖸

Subject:

 $f(x,y) = \frac{x \cdot y \ln(x^2 + y^2)}{(x,y) \neq (0,0)} \frac{1}{(x,y)}$

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} x \cdot y \cdot \ln(x^2 + y^2)$$

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{x\to y} \frac{x\cdot y}{(x^2+y^2)} \ln (x^2+y^2)$$

=
$$\lim_{(x,y) \to (0,0)} \frac{x \cdot y}{x^2 + y^2}$$
 . $\lim_{(x,y) \to (0,0)} (x^2 + y^2) = \lim_{(x,y) \to (0,0)} (x^2 + y^2)$

$$\lim_{x \to y} \frac{x \cdot y}{x^2 + y^2} \cdot 0 = 0$$

$$\implies \lim_{(x,y) \to (0,0)} f(x,y) = 0 = f(0,0)$$
(0,0) = $f(0,0)$

$$f(x,y) = \frac{x^3. \cos y}{x^2 + y^2} \quad (x,y) \neq (0,0) \quad \text{old} \quad (x,y) = (0,0)$$

JMZLnZ=0

قيد قطة (0.0)

الحل: (0,0)

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{x^3 \cos y}{x^2 + y^2}$$

$$= 0 = t(0.0)$$

$$f(x,y) = \frac{e^{x,y}}{x^2 + y^2} \quad {(x,y) \neq (0,0)}$$

$$(x,y) = (0,0)$$

النهت المحاضرة *

1

777

Subject: _ 9 نوهد المقاملتين °-(1+a)=-1-a 3 3 والعبّعة المطلقة له الا = الا - ا ، $(1+\alpha)-2\sqrt{\alpha+1}+1$.9 9 $= (1+\alpha)-2\sqrt{\alpha+1} + 1$ مِذر الأول ، إسارة الكاني ، 3 3 -9 --3 الأن ع ا (الارب) = (0,2) = الاربي الوصلة الم < 8 - 9 0 9 0 < 8 2 $\forall \xi > 0 , \exists \delta = \sqrt{2\xi'} > 0 , ||(x,y)_{-(0,2)}|| < \delta$ カカカアクカ $\Rightarrow |f(x,y) - \frac{1}{2}| < \varepsilon$ $\ell lm f(x,y) = \frac{1}{2} \neq 0 = f(0,2)$ (0,2) نقطة مدية في 12 $(\chi, y) \longrightarrow (0,2)$ Sabbagh

$$f: R^2 - [(0,0)] \xrightarrow{e^{2y}} R$$

$$f(x,y) = \frac{e^{2y} - 1}{x^2 + y^2}$$

$$(x,y) \longrightarrow (0,0)$$
 من $x = y$ الحالة الأولى $x = y$ من الحالة الأولى الخالة الخالة الأولى الخالة الخا

y=0 व्याधीवीडी

$$\lim_{(\alpha,y)\to(0,0)} f(\alpha,y) = \lim_{\alpha\to0} f(\alpha,0) = 0$$

$$\lim_{(\alpha,y)\to(0,0)} x\to 0$$

$$\lim_{\alpha\to0} f(\alpha,0) = 0$$

$$\lim_{(\alpha,y)\to(0,0)} f(\alpha,0) = 0$$

باللائات لاثنات أنه لاته بناية لدالة خنار نقطيت كامنها ر تعي للصفر (مثلاً) لكن نابة الصور غيرمتاوية.

83 JIn

$$f(x,y) = \frac{e^{xy} - 1}{x^2 + y^2} \quad (x,y) = (0,0)$$

هل الدالة مسترة . الحل : بعا أن ليسب للدالة ناية (من العريث المابق)

3

67

1

THE REAL PROPERTY.

5

D

5

2

1

W

$$8 > ||(0.0) - (\pi, y)||, 0 < 3 = 8E, 0 < 3 \empty = 8E$$

$$\Rightarrow |f(x) - (0.0)| < \varepsilon$$

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

$$\frac{(2,y) \longrightarrow (0,0)}{2}$$

$$\left[\left(\frac{1}{n}, \frac{1}{n}\right)\right] \longrightarrow (0.0) \qquad (0.0)$$

$$\left\{ \left(\frac{2}{n}, \frac{1}{n} \right) \right\} \longrightarrow (0,0)$$

$$9\left(\frac{1}{n}, \frac{1}{n} \right) = 0$$

$$\Rightarrow \lim_{n \to \infty} 9\left(\frac{1}{n}, \frac{1}{n} \right) = 0$$

$$9\left(\frac{2}{h},\frac{1}{h}\right) = \frac{\frac{4}{n^2} - \frac{1}{n^2}}{\frac{4}{n^2} + \frac{1}{n^2}} = \frac{3}{5}$$

$$\implies \lim_{n \to \infty} 9\left(\frac{2}{n}, \frac{1}{n}\right) = \frac{3}{5}$$

$$\lim_{n\to\infty} 9\left(\frac{1}{n},\frac{1}{n}\right) + \lim_{n\to\infty} 9\left(\frac{2}{n},\frac{1}{n}\right)$$

$$f(x,y) = \frac{\chi^4}{\chi^2 + y^2} \quad (x,y) = (0,0)$$

Subject: _____

ندرس مب تعریف الاستمرار ،

 $\forall \epsilon > 0, \exists \delta > 0, ||(z,y) - (0,0)|| < \delta$ $\Rightarrow |f(x,y) - f(0,0)| < \varepsilon$

 $\left|f(\chi,y)-f(0,0)\right|=\left|\frac{\chi^4}{\chi^2+y^2}-0\right|$

 $=\frac{\chi^2}{\chi^2+y^2}\cdot\chi^2<\frac{\chi^2+y^2}{\chi^2+y^2}\cdot\chi^2$

 $< n^2 + y^2 < \delta^2 = \varepsilon$ 一起 医一种 $\chi^2 + y^2 < \delta^2$

 $\forall \xi > 0$, $\exists \xi = \sqrt{\xi'} > 0$, $||(x,y) - (0,0)|| < \xi$ $\Rightarrow |f(x,y) - f(0,0)| < \varepsilon$

أعي الدالة f مسترة عند (0.0).

※~※~

(x,y) = (0,0)

:6 11:

f(x,y) = $\frac{\chi^2 \cdot y^2}{\chi^2 + y^4} = (\chi, y) \neq (0.0)$

برمن أن الدالة f مترة على كلمستقم مارمن (0.0) وذلك دون

اَن تكون مسترة في (0.0) .

3

0

5

6

3

1

0

20

711

الحل ، معادلة المتقيم المار من مبدأ الإهدائيات (٥،٥)

y = xx $\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{x\to 0} f(x, \propto x)$

= $\lim_{x\to 0} \frac{x^2 x^3}{x^2 + x^4 x^4}$

 $= \lim_{x \to 0} \frac{\alpha^2 \chi}{1 + \alpha^4 \chi^4} = 0 \Longrightarrow f(0,0) = 0$ اذاً الدالة f متمرة على المنتقيم x x = y المارمن (0.0)

• سنثب أنها غيرمسترة في (0.0).

 $\chi = y^2$ خلف نعظه $\chi = y^2$ خلف نعظه $\chi = y^2$ خلف نعظه $\chi = y^2$ خلو (0.0) = 0

($\chi = y^2$ خلو (0.0) = 0

($\chi = y^2$ خلو (0.0) = 0

($\chi = y^2$ خلو (0.0) = 0

ملاعظة ، إذا كان السؤال أثبت أنه ليس للدالة نامة . كم نا كند نقطين و نصورهم. أما عني الاستمال [انبت أن الدالة غيرم مترة]، نأكن فقط نقطة والمدة

M	있으로 있는데 그런데 그리고 있는데 이 사람들이 되었다. 그는데 그런데 그런데 그런데 그런데 그런데 그런데 그런데 그런데 그런데 그런
3	
-3	Date: <-19/ Subject:
2	
*	
	The state of the s
3	1 (W) 1 (W) (W)
9	r cs one :s
	٥٥٥- مشتقات وتكاملات الدوال المقيقية لعدة متفرات -٥٥٥
	N ~
3	f: D ⊆ R" -> R intil : Lieue.
	المعتبة الما المعتبة على المعتبة المعت
	ولتكن CED فإذا ومدت الهامة التالية:
	llm f(C, + h, C2,, Cn) - f(C, , C2,, Cn)
	$0 \longrightarrow 0$
	$\frac{1}{2}$
	عند تذ تقولا بان للداله + مستوا جزيجي في نا بالنسبة للمتغير الأول 🗴
	عند نعقول ان للدالة مَ مَشْتَقَ جِزِيِّ فِي C بِالنَّسِبَة للمتغير اللاُول, مِن عند نعقول الله لله الله الله عند الله الله الله الله الله الله الله الل
	وبنف الطريقة نكتب المئتق الجزيم لـ ٢ بالنبه للمتنزالثاني
-	C alpeil 1 22
	$\frac{\partial F}{\partial x_2}(C) = \lim_{h \to 0} \frac{f(C_1, C_2 + h, C_3, \dots, C_n) - f(C_1, C_2 \dots C_n)}{h}$
2	$dx_2 \qquad h \rightarrow 0$
2	
	$\delta = 1.2n$ $\delta = (c) = llm f(C_1, C_2, \dots, C_i + h, \dots, C_n) - f(C_i, \dots, C_n)$
	$3i=1.2n$ $3F(C)=\lim_{h\to 0}f(C_1,C_2,,C_i+h,,C_n)-f(C_i,,C_n)$
	Sabbagh
A V	

Date : 900 Subject: 3 و هكذا نعرف المشتقات الجزئية من مراتب عليا. 3 fire R2 -> R 3 $(x,y) \longrightarrow f(x,y)$ $\frac{\lambda^m F}{\lambda x^m}$, $\frac{\lambda^m F}{\lambda x^{m-1} \lambda y}$, $\frac{\lambda^m F}{\lambda x^{m-2} \lambda y^2}$, $\frac{\lambda^m F}{\lambda x \lambda y^{m-1}}$ 3 -3 2 ym 3 تسمي المعتقات الجزئية الصرفة بالكلاء رهذه المشتقات المزئية المستقات المزئية المنتلطة ، 19 عدد المثنقات الخرقة هي ا+ m) 88 ه اله $f(x,y) = x^3 y^5$ fx (x,y), fy (x,y), fzy (x,y), fyx (x,y), fax (x,y), fyy (x,y) 1/2/0 $f_{\chi}(\chi,y) = 3\chi^2 y^5$ fzy(x,y) = 15 x2 y4 Sabbagh

Date: 1.1 Subject: __ $f_{xx}(x,y) = 6xy^5 | f_y(x,y) = 5x^3y^4$ fyx(x,y) = 15 x2 y4 fyy (x,y) = 20 x3 y3 f₂y(2,y) = f_{y2}(2,y) θωρ · (x,y) = (0.0) f(x,y) = $f_{yx}(0.0)$, $f_{xy}(0.0)$ f₂(2, y), f_y(2, y) o f₂(0,0), f_y(0,0) talile is idelle de l'allo de $f_{2}(0,0) = \lim_{h \to 0} f(0+h,0)$ مغوضة بالفزع اللاغية للائن النقطة (١٠٥) $=\lim_{h\to 0}\frac{\frac{1}{h^2}-0}{h^2}$ $f_{\chi}(\chi,y) = \frac{\partial F}{\partial \chi}(\chi,y) = \frac{y^{2}(\chi^{2}+y^{2})-2\chi(\chi y^{2})}{(\chi^{2}+y^{2})^{2}}$ Sabbagh

Date : 900 Subject: __ $= \frac{-\chi^2 y^2 + y^7}{(\chi^2 + y^2)^2}$: (x,y)=(0,0) $f_{\alpha}(x,y) =$ $\frac{-\chi^{2}y^{2}+y^{2}}{(\chi^{2}+y^{2})^{2}}:(\chi,y)\neq(0,0)$ $f_y(0.0) = \lim_{h \to 0} \frac{f(0.0+h) - f(0.0)}{h} = \lim_{h \to 0} \frac{h^2 - 0}{h} = 0$ $f_{y}(x,y) = 2xy(x^{2}+y^{2}) - 2y(xy^{2})$ $(x^{2}+y^{2})^{2}$ $= \frac{2 \chi^3 y}{(\chi^2 + y^2)^2}$ 0 (x,y) = (0.0). fy (2,y) = = $\frac{2 \chi^{3} y}{(\chi^{2} + y^{2})^{2}} \circ (\chi, y) \neq (0, 0)$

$$(0,h)$$
 is $f_{x}y(0,0) = \lim_{h\to 0} \frac{f_{x}(0,0+h) - f_{x}(0,0)}{h}$

Fi	Date :<. 19 / 돈 / 도 Subject:
3	
	4
	المارة عمال ارتباط
	(2) Mistra
	I Die is
	(hotes 2) (labor 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1
	ا المستقر المتها،
	ى تفاصلات الدوال التقيقية لمدة منفيرات.
	the state of the s
	$f: D \subseteq R^n \longrightarrow R$ $var{\Sigma}$
-	. طمعتومة .
	ولتكن "CED و "العالم بحيث ا= العال
	فاذا وجدت النابة النالية
	llm f(c+hu)-f(c)
	$h \rightarrow 0$ h
	ر مرته نقول عن الدالة f فإن لا مشق عن الفطة عالما تماه ما
19	و نوم على الذار ا
-	$u = e_1(1,0,0,0)$
- 3	
	Sabbagh

Date: / / 및 및 및

Subject:

$$\frac{\partial F}{\partial u}(c) = \lim_{h \to 0} \frac{f(C_1 + h, C_2, C_3, \dots, C_n)}{h} - f(C_1, C_2, \dots, C_n)$$

$$= \frac{dF}{dx}, (C)$$

$$C + hu = (C_1, C_2, \dots, C_n) + h (1, 0, 0, \dots, 0)$$

$$= (C_1 + h, C_2, C_3, \dots, C_n)$$

اذا" المستق الا تجاهي هو تعيم المشتق الجزيئ فيما له أكمذنا لما "اذا" المستق الا تجاهي هو تعيم المشتق الجزيئ فيما له أكمذنا لما "اذا" هو أكمد الاستعه القانونية في و (0.1.0،....) و و (0.1.0،....)

$$f \circ R^{2} \longrightarrow R$$

$$f(x,y) = \begin{cases} x & y^{2} \\ x^{2} + y^{2} \end{cases} \circ (x,y) = (0,0)$$

كلة (0,0) اوجد (0,0) كلية.
$$u = (\alpha, \beta)$$

Date : 11 800 Subject: _____ ||u|| = || (x, B)|| الحل؛ إلى $\frac{\partial F}{\partial u}(0.0) = \lim_{h \to 0} \frac{f(c+hu) - f(c)}{h}$ النفطة عيدة (٥٠٥) $hw = h(\alpha, \beta) = (h \alpha, h \beta)$ $\frac{\partial F}{\partial u} = \lim_{h \to 0} \frac{f(h \times h B) - f(0,0)}{h}$ $= \lim_{h \to 0} \frac{h^3 \propto B^2}{h^2 \propto^2 + h^2 B^2} - 0$ $= \frac{\propto \beta^2}{\propto^2 + \beta^2} = \frac{\sim \beta^2}{1} = \frac{\beta}{\sim \beta^2}$ $f \in \mathbb{R}^n \longrightarrow \mathbb{R}$ $f(x) = ||x||^2 \quad \text{of } C \in \mathbb{R}^2$ $\frac{\partial F}{\partial u}(C) \qquad \text{if } u = \left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)$ الحلي $||u|| = ||\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}\right)||$ $= \sqrt{\frac{1}{n} + \frac{1}{n} + \cdots + \frac{1}{n}}$ Sabbagh

Date : / /

Subject: __

$$C + hu = (C_1, C_2, \dots, C_n) + (\frac{h}{\sqrt{n}}, \frac{h}{\sqrt{n}}, \dots, \frac{h}{\sqrt{n}})$$

$$=\left(C_1+\frac{h}{\sqrt{n'}},C_2+\frac{h}{\sqrt{n'}},\ldots,C_n+\frac{h}{\sqrt{n'}}\right)$$

$$f(C+hu) = \|C+hu\|^{2} = (C_{1} + \frac{h}{\sqrt{n}})^{2} + (C_{2} + \frac{h}{\sqrt{n}})^{2} + (C_{2} + \frac{h}{\sqrt{n}})^{2} + (C_{1} + \frac{h}{\sqrt{n}})^{2} + (C_{1} + \frac{h}{\sqrt{n}})^{2} + (C_{1} + C_{2} + \cdots + C_{n})^{2}$$

$$+ \frac{C_{1}^{2} + \cdots + C_{n}^{2} + \frac{2h}{\sqrt{h^{1}}} (C_{1} + C_{2} + \cdots + C_{n}^{2} + \frac{h^{2}}{n})}{+ \left(\frac{h^{2}}{n} + \frac{h^{2}}{n} + \cdots + \frac{h^{2}}{n}\right)}$$

$$\frac{h}{h} \left(\frac{h^2 + h^2}{h} + \dots + \frac{h^2}{h} \right)$$

$$= \sum_{i=1}^{n} C_{i}^{2} + 2 \frac{h}{\sqrt{n}!} \sum_{i=1}^{n} C_{i} + h^{2}$$

$$f(c) = ||c||^2 = c_1^2 + c_2^2 + \cdots + c_n^2 = \sum_{i=1}^n c_i^2$$

•
$$\frac{1}{\sqrt{2}} F(C) = \lim_{h \to 0} \frac{\sum_{i=1}^{n} C_{i}^{2} + 2 \frac{h}{\sqrt{n!}} \sum_{i=1}^{n} C_{i} + h^{2} - \sum_{i=1}^{n} C_{i}^{2}}{\sqrt{n!}} \frac{\sum_{i=1}^{n} C_{i} + h^{2} - \sum_{i=1}^{n} C_{i}^{2}}{\sqrt{n!}}$$

=
$$\lim_{h\to 0} \left(\frac{2}{\sqrt{n}!} \sum_{i=1}^{n} C_i + h\right) = \frac{2}{\sqrt{n}!} \sum_{i=1}^{n} C_i$$

D	
B	
N D	ate: / / Pier Subject:
3	
3	٥٥٥- تفا ضلات الدوال التقيقية لعدة متنزات - ٥٥٥
3	فهم ليـــــ للحفظ (غيرمطلوبة ١٨٨)
3	$f: D \subseteq R" \longrightarrow R$
3	ظم بعد
3	و لتكني (a,b)= C e D° و لتكني
3	ولفرض وجود عددين مقيقين ١٠١٨ جيث
_	8> ال(hot) الفاذ اوهدت الأعداد A,B بست محققاة
_)	(^^ المناكة المناكة) f(a+h, b+K)-f(a.b)=Ah +BK+ / (h.K) \/ h+1
_3	llm / (h, k) = 0 11 (1111) √h+1
	$(h,K) \rightarrow (0,0)$
	عنرتذ نقول بأن الدالة f قابلة للاشتقاف (المفاضلة) عن النقطة
_	(α,b)
-	- لنقست A : ففرضه k=0
->	$f(a+h,b)-f(a,b)=Ah+\mu(h,k)\sqrt{h^2}$
->	نق على الطرفين،
-	$\frac{f(\alpha+h,b)-f(\alpha,b)}{h}=A\mp\mu(h,K)$
3	has been been a second of the
-	$\lim_{h\to 0} \frac{f(\alpha+h,b)-f(\alpha,b)}{h} = A+0$ $\lim_{h\to 0} \mu = 0$
-)	$h \rightarrow 0$ h $lim \mu = 0$
-	$\Rightarrow A = \frac{\partial F}{\partial x} (\alpha, b)$
3	da

Subject: ____ Date : / / بنفس الطريقة لتسي B ، نفرض 1 = م & F (a,b) = B f(a+h,b+K)-f(α,b)=hfz(α,b)+Kfy(α,b)+μ√h2+K2 11 (h. t.)11 $\lim_{(h,K)\to(0,0)}\mu=0$ اد انحقق ، عندئذ f تكون قابلة للاشتقاق (المفاضلة). مثال ، ادرس قابلة الاشتقاق من النفظة (0.0) & (x,y) = (0.0) f(x,y) = < $\frac{\chi y^2}{\chi^2 + y^2}$ $(\alpha, y) \neq (0.0)$ الحل: $f(a+h,b+h) = f(h,K) = \frac{hK^2}{h^2+k^{-2}}$ f(a,b) = f(a,0) = 0 $f_{2}(0,0) = \frac{\partial F}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h}$ هر ية ك Sabbagh

Date: /

3

3

3

Subject:

$$f_y(0.0) = \lim_{h\to 0} \frac{f(0.0+h) - f(0.0)}{h} = 0$$

$$\frac{h k^{2}}{h^{2} + k^{2}} = 0 = 0 + 0 + \mu \sqrt{h^{2} + k^{2}}$$

$$\mu = \frac{h L^{2}}{(h^{2} + |\Gamma^{2}|)(\sqrt{h^{2} + L^{2}})}$$

$$\frac{3}{2} = 1 + \frac{1}{2} \text{ and } 1124$$

$$f(a+h,b+k) = (a+h)^{2} + 2(a+h)(b+k)$$

$$= \alpha^{2} + 2ah + h^{2} + 2\alpha b + 2\alpha k + 2hb + 2hk$$

$$f(a,b) = \alpha^{2} + 2\alpha b$$

$$f(\alpha,b) = \alpha + 2\alpha b$$

$$f(\alpha+h,b+K) - f(\alpha,b) = 2\alpha h + h^2 + 2\alpha K + 2hb + 2hK$$

$$f_{\varkappa}(\varkappa,y) = 2\varkappa + 2y \Longrightarrow f_{\varkappa}(\alpha,b) = 2\alpha + 2b$$

$$f_{y}(\varkappa,y) = 2\varkappa + 2\chi \Longrightarrow f_{y}(\alpha,b) = 2\alpha$$

Sabbagh

الحلية

$$h^{2} + 2hK = \mu \sqrt{h^{2} + K^{2}}$$

$$\mu = \frac{h^{2} + 2hK}{\sqrt{h^{2} + K^{2}}}$$

$$\lim_{(h,K)\to(0,0)} \frac{?}{} 0$$

$$\frac{h^{2} + 2hK}{\sqrt{h^{2} + K^{2}}} = \frac{h^{2}}{\sqrt{h^{2} + K^{2}}} + \frac{2hK}{\sqrt{h^{2} + K^{2}}} + \frac{h^{2} + K^{2}}{\sqrt{h^{2} + K^$$

$$\implies h^2 - 2ht + t^2 > 0$$

$$\Rightarrow h - 2hh + k > 0$$

$$\Rightarrow (h - k)^{2} > 0$$

$$\Rightarrow \frac{h^{2} + 2hk}{h^{2} + k^{2}} < \frac{2(h^{2} + k^{2})}{\sqrt{h^{2} + k^{2}}} = 2\sqrt{h^{2} + k^{2}} = 2\delta.$$

$$= \xi$$

$$\forall \varepsilon > 0 . \exists S = \frac{\varepsilon}{2} > 0 . 0 < ||(h, t)|| < S$$

$$\Rightarrow ||u - 0|| < \varepsilon$$

Sabbagh

*

(2)		
	Date : / / '옮만[Subject:
3		
3		
3	(IIul	ملاعظة، عاد الم تكن 1=
3	200 1 Strang or Court	الطه اله V = V
3		V = \(\frac{u}{ u } \)
3		we well
3		النهدا المحاضرة ع
3		3 o yes (Sa) Ligary
3		The Control of the Co
3	$\mathcal{L}(\mathcal{Q})$	
•		~
		•
-		A COLLEGE OF THE PARTY OF THE P
3		Condition of the Condit
		21.0
	n - n - n	
	1 - 94	
	22	Land Alient
	Part of the second of the seco	
L		L. S. O.F. MILLY
L		
L		
	Sabbagh	

LY

طر $F : D \subseteq \mathbb{R}^2 \longrightarrow \mathbb{R}$ انكنا $f(a,b) \mapsto \mathbb{R}^2 \longrightarrow \mathbb{R}$ انكنا $f(a,b) \mapsto \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \longrightarrow$

 $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ $d_{c} F(\chi - c)$ c = (0, -2) Δc

 $f(x,y) = x^3 + 4xy^2 + 2xy \sin x$

 $\mathcal{X} - C = (\chi, y) - (0, -2) = (\chi, y+2)$ $d_{(0,-2)} = \int_{(0,-2)} (\chi, y+2) = \chi f_{\chi}(0, -2) + (y+2) f_{\chi}(0, -2)$

 $f_{\chi}(\chi, y) = 3\chi^{2} + 4y^{2} + 2y \sin \chi + 2\chi y \cos \chi$ $f_{\chi}(0, -2) = |6|$ $f_{\chi}(\chi, y) = 8\chi y + 2\chi \sin \chi$ $f_{\chi}(0, -2) = 0$

 $d_{(0,-2)}F(x-c)=|6x+0|=|6x$

تعمیم قابله الاشتقاق ا بی اله 3 مرکزها که لنکن $R = R^n$ کننه و R کننه و و R معتواه بر R فاذا کانته R و R معتواه بر R فاذا کانته R

121,3

VZ)

THE THE

THE STATE OF

Time

47

Medle M

800 Subject: _ A, A, An ER sleet 1 $f(c+h) - f(c) = \sum_{i=1}^{n} A_i h_i + \lambda \|h\|$ h, = 0, h2 = h3 = = h = 0 القيمان A, القيمان A, القرضاء ν = f(C+h) = f(C+h), C2, C3, ..., Cn) f(c+h) _ f(c) = & A; h; + & | | h | | $f(C_1+h_1,C_2,\ldots,C_n)-f(C_1,C_2,\ldots,C_n)$ $=A_1h_1+\lambda_1h_1H_2$ $f(C_1+h_1,C_2,C_3,\ldots,C_n)-f(C_1,C_2,\ldots,C_n)=A_1\mp llm$ 11/1/1-0 $\frac{\partial F}{\partial x}(c) = A$ $\frac{dF(c)=A}{dx}; h_i \neq 0$ $j \neq i$ $b_i \neq 0$

$$f(c+h) - f(c) = \frac{1}{2}h$$
, $f_{x}(c) + \lambda$ | $f(c+h) - f(c) = \frac{1}{2}h$, $f_{x}(c) + \lambda$ | $f(c+h) - f(c) = \frac{1}{2}h$, $f_{x}(c) + \lambda$ | $f(c+h) - f(c) = \frac{1}{2}h$, $f(c) + \lambda$ | $f(c) + \lambda$

$$h \mapsto d_{c} F(h) = \sum_{i=1}^{n} h_{i} F_{x_{i}}(C)$$

ندعو هذه الدالة الخطية بمشتق فريشيه.

- و لتحقیق الانسجام بین الرمد زالقدیمة و الجدیدة نفرضه

$$d_{\varkappa}$$
, $R'' \longrightarrow R$

$$\chi \mapsto d \chi_{i}(\chi) = \chi_{i}$$

$$d_c F(h) = \sum_{i=1}^h f_{x_i}(c) dx_i(h)$$

$$\Rightarrow d_c F = \sum_{i=1}^{n} \frac{\partial F}{\partial x_i}(c) \partial x_i$$

 $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ $(x,y,Z) \longmapsto f(x,y,Z) = e^{-(x+y+z)}$ $C(0,0,0) \quad \text{and} \quad \chi - C \quad \text{is a composition}$

 $\frac{\mathcal{X} - C = (\mathcal{X}, \mathcal{Y}, \mathcal{Z}) - (0, 0, 0) = (\mathcal{X}, \mathcal{Y}, \mathcal{Z})}{d_{c}F(\mathcal{X} - C) = d_{c}F(\mathcal{X}, \mathcal{Y}, \mathcal{Z}) = \mathcal{X}f_{z}(0, 0, 0) + \mathcal{Y}f_{y}(0, 0, 0) + \mathcal{Z}f(0, 0, 0)}$

 $f_{\chi}(\chi, y, z) = -e^{-(\chi+y+z)} = f_{\chi}(\chi, y, z) = f_{z}(\chi, y, z)$

 $f_{z}(0,0,0) = f_{y}(0,0,0) = f_{z}(0,0,0) = -1$

d F(x, y, Z) = -x-y-Z

مبرهنة: (مكررة في الدورالت ١٠٠١)

 $f: D \subseteq R^{n} \longrightarrow R$ $c \in D^{\circ}$ $c \in D^{\circ}$

فإذا كانت عمالية للا شتقاق في C فهنالك عددان مو جبان ٢.8

||x-c|| < 8

بعقق معق

 $|f(x)-f(c)| < \kappa ||x-c||$

تان

Sabbagh

 $f: R^2 \longrightarrow R$

$$f(x,y) = \frac{x}{y} : y \neq 0$$

W.

W.

0

أَشِتِ أَنْ £ غِرِقا بِلَةَ لِاشْتَقَاقَ عَدِ (0.0)

الحل: يكفى إثبات أن f غيرمتوة $8 > 0, \varepsilon = \frac{1}{2}, 3 \in \mathbb{Z}, \frac{1}{2} = 3, 0 < 3 \forall$

 $\Rightarrow |f(x,y)-f(0,0)| < \varepsilon$

$$x = y = \frac{8}{2}$$

منا لفظ مس تكون أصفومنا 8

$$\|(\chi,y)\| = \|(\frac{\delta}{2},\frac{\delta}{2})\| = \sqrt{\frac{\delta^2}{4} + \frac{\delta^2}{4}} = \sqrt{\frac{(\delta)^2}{2}} = \sqrt{\frac{\delta}{2}}$$

$$|f(x,y)-0| = \left|\frac{\chi}{y}\right| = \left|\frac{\frac{S}{2}}{\frac{S}{2}}\right| = 1 > \frac{1}{2}$$

أي f غير مستمرة عند (0.0) فهر عير قابلة للاشتقاف

ل رعر) ن

انتهب الماضرة:

Sabbagh