$$
c .141<1<0
$$

blâ cs,p : pi, ss
ε H5: ṗlul
b, J_{l} : 戶ि ipltit

$$
\mathbb{R}^{n} \geqslant-
$$

étanuld allé, ded uplp

䋅
(sip of

 aupes ajt p.Y çt seep, 1

$$
\forall x, y, z \in X
$$

1) $x+y \in x$
c) $x+y=y+x$
2) $x(y+z)=(x+y)+z$
$\Rightarrow \operatorname{sis}(X,+)$
घ) $\exists 0 \in X \quad \quad x+0_{x}=0_{x}+x=$
p) $]=x \in X, \quad(-x)+x=x+(-x)=O_{X}$

Alamal
cées sue celjà IL.

$$
, \forall x, y \in X, \quad \forall \alpha, \beta \in R
$$

1) $\alpha x \in X$
c) $(\alpha+\beta) x=\alpha x+\beta x$

र)' $(\alpha \cdot \beta) x)=\alpha \cdot(\beta x)$
ع) $a(x+y)=\alpha x+\alpha y$
o)' $\exists 1_{R} \in R \Rightarrow 1_{R} \cdot x=x$

$R^{n}=\frac{R \times R \times R \times \times R}{\rho \rho n}$ dejes isices
 $\forall x, y \in R^{n}$

$$
\begin{aligned}
x+y & \left.=\left(x_{1}, x_{2},, x_{n}\right)+\left(y_{1}, y_{2}, \ldots,\right)_{n}\right) \\
& \left.=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{n}+\right)_{n}\right) \\
d x & =d\left(x_{1}, x_{2},,-x_{n}\right)=d x_{n}, d x_{2}, d x_{n}
\end{aligned}
$$

-qui slip. $\left(R^{n},+1,-\right)$ cil

$$
O_{R}=\frac{(0,0, \ldots, 0)}{\bar{\rho} \rho n} \quad f(+) \subseteq L_{p}
$$

цp,$\quad-x=\left(-x_{1},-x_{2}, \ldots,-x_{n}\right)$

Cills, cré auts $X=C[a, b]$ us cide) $[a, b]$

$$
\forall t \in[a, b] \quad, x, y \in C[a, b]
$$

1) $(x+y)(t)=x(t)+y(t)$
c) $(d x)(t)=d x(t)$
gisibs $^{2} 15 \cdots(C[a, b],+, 0) T_{i j}$

$$
\underset{\forall x, y \in X}{x}\|x\|
$$

(II) $\|x\| \geqslant 0$
(I) $\|x\|=0 \Longleftrightarrow x=0_{x}$
(r) $\forall d \in \mathbb{R}:\|\alpha x\|=|a|$. $\|x\|$
[ह] $\|x+y\| \leqslant\|x\|+\|y\|$
cntárefosid,

$$
\forall x \in \mathbb{R}^{n} ;\|x\|=\sum_{i=1}^{n} \frac{J_{i}}{|x|}
$$

c^{n} fósup $\left(\mathbb{R}^{n},\|\|,\right)$ siup.

$$
x_{i}=\left(x_{1}-x_{2}, \cdots \quad x_{n}\right)
$$

1)

$$
\begin{aligned}
\left|x_{1}\right| & \geqslant 0 \Rightarrow \sum_{1=1}^{n}\left|x_{1}\right| \geqslant 0 \\
& \Leftrightarrow\left\|_{x}\right\| 0
\end{aligned}
$$

x séd aus us adplánéluil

2) $\|x\|=0 \Longleftrightarrow \sum_{i=1}^{n}\left|x_{i}\right|=0$

$$
\Leftrightarrow\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|=0
$$

 - eppos $1=$ rel jo

$-\Sigma-H L_{5}$
is àsiplo en,

$$
\left\langle x_{1} y+z\right\rangle=\sum_{i=1}^{n} x_{i}\left(y_{i}+z_{1}\right)
$$

$$
=\langle x, y\rangle+\langle x, z\rangle
$$

0) $\left\langle d x_{i} y\right\rangle=\sum_{i=1}^{n}\left(d x_{i}\right) y_{i}$

$$
\begin{aligned}
& =\sum_{i=1}^{n} a\left(x, y_{i}\right) \\
& =a\langle x, y\rangle
\end{aligned}
$$

$\langle x, a y\rangle=d\langle x, y\rangle=0{ }^{2} p$? (i) sis rip $\left(\mathbb{R}^{n},\langle\rangle,\right){ }^{\sim}$

$$
\begin{aligned}
& \Longleftrightarrow x=o_{\mathbb{R}^{n}} \\
& \text { () }\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}=\sum_{i=1}^{n} y_{i} x_{i} \\
& -\langle y, x\rangle \\
& \text { r) }\langle x+y, z\rangle=\sum_{i=1}^{n}\left(x_{i}+y_{i}\right) \cdot z_{i} \\
& =\sum_{i=1}^{n}\left(x_{i} z_{i}+y_{i} z_{i}\right) \\
& =\sum_{i=1}^{n} x_{i} z_{i}+\sum_{i=1}^{n} y_{i} z_{i} \\
& =\langle x, z\rangle+\langle y, z\rangle
\end{aligned}
$$

$$
\begin{aligned}
\langle\cdots\rangle & X \times \mathbb{R} \\
(x, y) & \longrightarrow\langle x, y\rangle
\end{aligned}
$$

$\forall x, y, z \in X, \forall a \in \mathbb{R}$

1) $\langle x, x\rangle \geqslant 0$
c) $\langle x, x\rangle=0 \Leftrightarrow x=0_{x}$
i) $\langle x, y\rangle=\langle y, x\rangle$
z) $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$
$\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$
o) $\langle\alpha x, y\rangle=x\langle x, y\rangle=\langle x, \alpha y\rangle$
$(X,<0, \Rightarrow)$ is $J_{\text {ger }}$ inis. dpests sups
alladill R^{n} 上ecied dLe
$\left\langle, \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \overline{\mathbb{R}}\right.$
$(x, y\rangle) \longrightarrow\langle x y\rangle \sum_{i=1}^{n} x_{i} y_{i}$
$\left(\mathbb{R}^{n},<,>\right)$ ii $-=i$
Cupl) st D shps
-"1) of all
$s d \dot{p}^{\prime}>\sin ^{\prime} p$.
*) $\forall x, y, z \in \mathbb{R}^{n} \quad \forall \alpha \in \mathbb{R}$
2) $\langle x, x\rangle=\sum_{i=1}^{n} x_{1}^{2} \geqslant 0$

$$
\begin{aligned}
& \|x+y\|^{2}+\|x-y\|^{2} \\
& =2\left[\|x\|^{2}+\|y\|^{2}\right]
\end{aligned}
$$

1): عop is ii iegejum

$$
x=\mathbb{R}^{2}, \sigma \cdot \frac{\sum s_{i} \delta_{1}}{s v_{0}}
$$

$\|x\|=\sum_{i=1}^{n}\left|x_{i}\right|=\operatorname{dil}=\prod_{1}$ alcoil,

$x(1,1), y(1,-1) \in \mathbb{R}_{2}^{2}$ io is

$$
\begin{aligned}
&\|x+y\|=\|(1,1)+(1,-1)\| \\
&=\|(2,0)\|=|2|+|0|=2 \\
&\|x+y\|^{2}=4 \\
&\|x-y\|=\|(1,1)-(1,-1)\| \\
&=\|(0,2)\| \\
&=|0|+|2| \\
&=|2|=2 \\
&\|x-y\|^{2}=4
\end{aligned}
$$

sheshpovislis:äp

$$
x \longmapsto\|x\|=\sqrt{\langle x, x\rangle}
$$

$$
\checkmark \notin \text { İqu }
$$

Fij 位 Gip un

$$
\forall x, y \in V, \forall \alpha \in \mathbb{R}
$$

1)

$$
\begin{aligned}
& \langle x, x\rangle \geqslant 0 \Rightarrow \sqrt{\langle x, x\rangle} \geqslant 0 \\
& \Rightarrow\|x\| \geqslant 0
\end{aligned}
$$

2)

$\|x\|$
4) $|x, y|=\sqrt{\langle x+y, x+y\rangle}$

$$
\begin{aligned}
& \Rightarrow\|x+y\|^{2}=\langle x+y, x+y\rangle \\
& =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle \\
& +\langle y, y\rangle \\
& =\langle x, x\rangle+2\langle x, y\rangle+\langle y, y\rangle \\
& \leqslant\langle x, x\rangle+2 \sqrt{|x, x\rangle} \sqrt{\langle y, y\rangle+\langle y, y\rangle} \\
& \leqslant\|x\|^{2}+2\|x\| l \mid y\|+\| y \|^{2} \\
& \leqslant(\|x\|+\|y\|)^{2} \\
& \Rightarrow\|x+y\|^{2} \leqslant(\|x\|+\|y\|)^{2} \\
& \Rightarrow\|x+y\| \leqslant\|x\|+\|y\|
\end{aligned}
$$

- - oẽos csi ás

$$
\begin{aligned}
& \Longleftrightarrow\langle x, x\rangle=0 \\
& \Longleftrightarrow x=0_{y} \\
& \text { 3) } \begin{aligned}
&\|x \alpha\|=\sqrt{\langle a x, d x\rangle}=\sqrt{a^{2}\langle x, x\rangle} \\
&=|a| \sqrt{\langle x, x\rangle} \\
&=|a|\left\|_{x}\right\|
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \|x\|=\|(1,1)\|=|1|+|1|=2 \\
& \|x\|^{2}=4 \\
& \|y\|=\|(1,-1)\|=|1|+|-1|=2 \\
& \|y\|^{2}=4 \\
& \Rightarrow\|x+y\|^{2}+\|x y\|^{2}=8 \\
& 2\left(\|x\|^{2}+\|y\|^{2}\right)=2(8)=16
\end{aligned}
$$

- Jpal, , wics g
stejl, issai ésepll
$d p \prime$,
csilu le:s lus!

$$
\{l p \mid \text { ãals }
$$

$$
\begin{aligned}
& \|\cdot\|: R^{n} \rightarrow R \\
& x \longmapsto\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}} \\
& \text { : }-\sqrt{6}, \sqrt{4} \\
& \text { (b) ali= } \\
& \forall x, y \in R^{\prime \prime}, \forall \neq \in \\
& \|x\|=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}} \geqslant 0 \\
& : \frac{: \sqrt{1}}{\sqrt{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \|x\|=0 \Longleftrightarrow\left(\sum_{i=1}^{n} x_{i}^{2}\right)=0 \\
& \Leftrightarrow \sum_{i=1}^{n} x_{i}^{2}=0 \Longleftrightarrow x_{i}^{2}=0 \quad i=1 . — n \\
& \Longleftrightarrow x_{i}=0 \quad i \quad i=1 \cdots n \\
& \Leftrightarrow x=0_{R} n \\
& \|\alpha x\|=\left(\sum_{i=1}^{n}\left(\alpha x_{i}\right)^{2}\right)^{\frac{1}{2}} \\
& \text { : الـ } \\
& =\left(\sum_{i=1}^{n} \alpha^{2} x_{i}^{2}\right)^{\frac{1}{2}}=\left(\alpha^{2}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}} \\
& =|\alpha|\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}=|\alpha| \| x| |
\end{aligned}
$$

$$
\begin{aligned}
& \|x+y\|=\left(\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)^{2}\right)^{\frac{1}{2}} \\
& \Rightarrow\|x+y\|^{2}=\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(x_{i}^{2}+2 x_{i} y_{i}+y_{i}^{2}\right) \\
& \|x+y\|^{2}=\sum_{i=1}^{n} x_{i}^{2}+2 \sum_{i=1}^{n} x_{i} y_{i}+\sum_{i=1}^{n} y_{i}^{2} \\
& \text { 原 } \\
& \therefore \text { Lesi }\langle x, x\rangle=\|x\|^{2}=\sum_{i=1}^{n} x_{i}^{2} \\
& =\langle x, x\rangle+2\langle x, y\rangle+\langle y, y\rangle \\
& =\|x\|^{2}+2\langle x, y\rangle+\|y\|^{2}
\end{aligned}
$$

弾法 $\leqslant \leqslant\|x\|^{2}+2 \sqrt{\langle x, x\rangle} \cdot \sqrt{\langle y, y\rangle}+\|y\|^{2}$

$$
\begin{aligned}
\langle x, y\rangle \leqslant \sqrt{ } & \\
& \leqslant\|x\|^{2}+2\|x\| \cdot\|y\|+\|y\|^{2} \\
\Rightarrow & \|x+y\| \leqslant\|x\|+\|y\|
\end{aligned}
$$

: Leر

$$
\begin{array}{ll}
\bar{x}=\left\{x_{i}\right\} & : i=1 \longrightarrow n \\
y=\left\{y_{i}\right\} & : i=1 \longrightarrow n
\end{array}
$$

:

$$
\|x\|=\sup _{i \in \psi^{*}}\left|x_{i}\right|
$$

$$
\forall x, y \in l^{\infty} \quad, \forall \alpha \in R \quad: J \mid
$$

1) $\|x\|=\sup _{i \in N^{*}}\left|x_{i}\right| \geqslant 0$
2)

$$
\begin{aligned}
\|x\|=0 & \Leftrightarrow \sup _{i \in \mathbb{N}^{+}}\left|x_{i}\right|=0 \\
& \Leftrightarrow\left|x_{i}\right|=0 \quad: i \in \mathbb{N}^{*} \\
& \Leftrightarrow x=0 \quad e^{\infty}
\end{aligned}
$$

3)

$$
\begin{aligned}
\|\alpha x\| & =\sup _{i \in \mathbb{N}^{*}}\left|\alpha x_{i}\right| \\
& =|\alpha| \sup _{i \in \mathbb{N}^{*}}\left|x_{i}\right| \\
& =|\alpha| \cdot\|x\|
\end{aligned}
$$

4) $\|x+y\|=\sup _{i \in N^{*}}\left|x_{i}+y_{i}\right|$

$$
\begin{aligned}
& \left|x_{i}+y_{i}\right| \leqslant\left|x_{i}\right|+\left|y_{i}\right| \leqslant \sup _{i \in N^{*}}\left|\dot{x}_{i}\right|+\sup _{i \in N^{*}} \mid y_{i}
\end{aligned}
$$

$\Rightarrow\left|x_{i}+y_{i}\right| \perp \perp d^{5} \mid$ 量 $\Delta \sup \left|x_{i}\right|+\sup \left|y_{i}\right|$ 上́ $\mid \leq s$: \dot{L}^{\prime}

$$
\begin{gathered}
\sup _{i \in N^{*}}\left|x_{i}+y_{i}\right| \leqslant \sup _{i \in N^{*}}\left|x_{i}\right|+\sup _{i \in N^{*}}\left|y_{i}\right| \\
\Rightarrow\|x+y\| \leqslant\|x\|+\|y\|
\end{gathered}
$$

$$
\|x\|=\max _{t \in[a, b]}|x(t)|
$$

.
[$X=C[a, b]: \frac{d J}{3}$

$$
\forall x, y \in X=c[\alpha, b] \quad, \forall \alpha \in R
$$

1)

$$
\|x\|=\max _{t \in[a, b]}|x(t)| \geqslant 0
$$

2)

$$
\begin{aligned}
\|x\|=0 & \Leftrightarrow \max _{t \in[a, b]}|x(t)|=0 \\
& \Leftrightarrow|x(t)|=0: t \in[\alpha, b] \\
& \Leftrightarrow x=0 \quad \forall t \in[\alpha, b]
\end{aligned}
$$

3)

$$
\begin{aligned}
\|\propto x\| & =\max _{t \in[\alpha, b]}|(\alpha x)(t)| \\
= & \max _{t \in[a, b]}|\alpha x(t)|=|\alpha| \max _{t \in[a, b]}|x(t)| \\
& =|\alpha|\|x\|
\end{aligned}
$$

4)

$$
\begin{aligned}
\|x+y\|= & \max _{t \in[a, b]}|(x+y)(t)| \\
& =\max ^{\|}|x(t)+y(t)| \\
& \leqslant \max _{t \in[u, b]}|x(t)+y(t)| \\
& \leqslant \max _{t \in[u, b]}|x(t)|+\max _{t \in[x, b]}|y(t)|
\end{aligned}
$$

$$
\|x+y\| \leqslant\|x\|+\|y\|
$$

$$
\text { . }(c[\alpha, b],\|\cdot\|)
$$

$$
\begin{aligned}
& \|x+y\|^{2}+\|x-y\|^{2} \neq 2\left[\|x\|^{2}+\|y\|^{2}\right] \\
& x(t)=\sin t \quad, t \in[0,2 \pi] \\
& y(t)=2 \\
& \|x+y\|=\max _{t \in[0, b]}|(x+y)(t)| \\
& =\max _{t \in[0, z \in\}}|x(t)+y(t)| \\
& =\max _{t \in[0,2 \pi]}|\sin (t)+2|=3 \\
& \|x+y\|^{2}=9 \\
& \|x-y\|=\max _{t \in[a, b]}|x(t)-y(t)| \\
& =\max _{t \in[t, 2 \pi]}|(\sin t)-2|=3 \\
& \|x-y\|^{2}=9 \\
& l_{1}=18
\end{aligned}
$$

$$
\begin{gathered}
\|x\|=\max _{[0,2 \pi]}|\sin t|=1 \\
\|x\|^{2}=1 \\
\|y\|=\max ^{\|}|y(t)|=\max |z|=2 \\
\|y\|^{2}=4 \\
\Rightarrow l_{2}=2[1+4]=10 \\
l_{1} \neq l_{2}
\end{gathered}
$$

-

:
$X \times X \quad$ ل
ولنرف علهـا هـا الجداء الدالهة:

$$
\begin{aligned}
d: X_{x} X & \longrightarrow R^{\prime \prime} \\
(x, y) & \longmapsto d(x, y)
\end{aligned}
$$

:

$$
\forall x, y, z \in X
$$

T $\quad \alpha(x, y) \geqslant 0$
$21 \quad d(x, y)=0 \Leftrightarrow x=y$
3) $\quad d(x, y)=d(y, x)$
$d(x, y) \leqslant d(x, z)+d(z, y)$
ند

ald R_{n}^{n}. $d: R^{n} \times R^{n} \longrightarrow R^{n}$

$$
(x, y) \longmapsto d(x, y)=\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right|
$$

IId $(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right| \geqslant 0$
: الى
2) $d(x, y)=0 \quad \Leftrightarrow \sum_{i=1}^{n}\left|x_{i}-y_{i}\right|=0$

$$
\begin{aligned}
& \Leftrightarrow\left|x_{i}-y_{i}\right|=0: i=1 \cdots n \\
& \Leftrightarrow x_{i}-y_{i}=0: i=1 \ldots n \\
& \Leftrightarrow x=y
\end{aligned}
$$

3) $d(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$

$$
=\sum_{i=1}^{n}\left|y_{i}-x_{i}\right|=d(y, x)
$$

$$
\begin{aligned}
4 d(x, y) & =\sum_{i=1}^{n}\left|x_{i}-y_{i}\right| \\
& =\sum_{i=1}^{n}\left|x_{i}-z_{i}+z_{i}-y_{i}\right|
\end{aligned}
$$

$$
\begin{aligned}
&\left|x_{i}-z_{i}+z_{i}-y_{i}\right| \leqslant\left|x_{i}-z_{i}\right|+\left|z_{i}-y_{i}\right| \\
&: \mid=1-n \\
& \sum_{i=1}^{n}\left|x_{i}-y_{i}\right| \leqslant \sum_{i=1}^{n}\left|x_{i}-z_{i}\right|+\sum_{i=1}^{n}\left|z_{i}-y_{i}\right| \\
& \Rightarrow d(x, y) \leqslant d(x, z)+d(z, y \mid \\
& \leq \sin ^{n} \operatorname{lin}\left(R^{n}, d\right)
\end{aligned}
$$

:atas 16

$$
d(x, y)=\|x-y\|
$$

آل位 F 4.
\because वढَا

$$
d(x, y)=\|x-y\|
$$

 الشَروط التالِّهَ

$$
\begin{aligned}
& \forall x, y, z \in X \quad \forall \alpha \in R \\
& \text { आ } d(x+z, y+z)=d(x, y) \\
& \text { 2 } d(\alpha x, \alpha y)=|\alpha| d(x, y) \\
& \forall x, y, z \in X \quad, \forall \alpha \in R \quad:-1, y) \\
& \text { 1) } d(x+z, y+z)=\|x+z-y-z\|=\|x-y\| \\
&=d(x, y)
\end{aligned}
$$

$$
\text { 2) } \begin{aligned}
d(\alpha x, \dot{\alpha} y)=\|\alpha x-\alpha y\| & =\|\alpha(x-y)\| \\
& =|\alpha|\|x-y\| \\
& =|\alpha| d(x, y)
\end{aligned}
$$

亿

的

$$
d(x, y)=\sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|x_{i}-y_{i}\right|^{\varepsilon^{-}-d \mid}|\lambda|}{1+\left|x_{i}-y_{i}\right|}
$$

$\Pi d(x, y)=\sum_{i=1}^{\forall x, y \in S} \frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|} \geqslant 0$
2) $d(x, y)=0 \Longleftrightarrow \sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|}=0$

$$
\begin{array}{ll}
\Longleftrightarrow\left|x_{i}-y_{i}\right|=0 & i=1 \\
\Longleftrightarrow x_{i}=y_{i} & \forall i \in \mathbb{N}^{\star} \\
\Longleftrightarrow x=y
\end{array}
$$

31

$$
\begin{aligned}
d(x, y) & =\sum_{i=1}^{\infty} \frac{1}{2^{\prime}} \cdot \frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|} \\
& =\sum_{i=1}^{\infty} \frac{1}{2^{\prime}} \frac{\left|y_{i}-x_{i}\right|}{1+\left|y_{i}-x_{i}\right|}=d(y, x
\end{aligned}
$$

$$
\begin{aligned}
4 d(x, z) & \leqslant d(x, y)+d(y, z) \\
d(x, z) & =\sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|x_{i}-z_{i}\right|}{1+\left|x_{i}-z_{i}\right|}
\end{aligned}
$$

$$
\left|\overparen{x_{i}-z_{i}}\right|=\left|x_{i}-y_{i}+y_{i}-z_{i}\right|
$$

$$
\leqslant\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|
$$

$$
\begin{aligned}
& 0<\alpha<\beta \\
& \alpha+\alpha \beta \leqslant \beta+\alpha \beta \\
& \alpha(1+\beta) \leqslant \beta(1+\alpha) \\
& \frac{\alpha}{1+\alpha} \leqslant \frac{\beta}{1+B}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\left|x_{i}-z_{i}\right|}{1+\left|x_{i}-z_{i}\right|} \leqslant & \frac{\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|}{1+\left|x_{i}-y_{i}\right|\left|y_{i}-z_{i}\right|} \\
& \leqslant \frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}+1 y_{i}-z_{i}\right|}+\frac{\left|y_{i}-z_{i}\right|}{1+\left|x_{i}-y_{i}+\left|y_{i}-z_{i}\right|\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|}+\frac{\left|y_{i}-z_{i}\right|}{1+\left|y_{i}-z_{i}\right|} \\
& \Rightarrow \sum_{i=1}^{\infty} \frac{1}{2^{\prime}} \frac{\left|x_{i}-z_{i}\right|}{1+\left|x_{i}+z_{i}\right|} \leqslant \sum_{i=1}^{\infty} \frac{1}{2^{\prime}} \frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|}+\sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|y_{i}-z_{i}\right|}{1+\left|y_{i}-z_{i}\right|} \\
& \Rightarrow d(x, y) \leqslant d(x, y)+d(y, z) \\
& \\
& \Rightarrow d \text { Lud } \mid J_{s}
\end{aligned}
$$

: 官

$$
\begin{aligned}
l_{1}=d(2 x, 2 y) & =\sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|2 x_{i}-2 y_{i}\right|}{1+\left|2 x_{i}-2 y_{i}\right|} \\
& =|2| \sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|x_{i}-y_{i}\right|}{1+|2|\left|x_{i}-y_{i}\right|} \\
l_{2}=|\alpha| d(x, y) & =2 \sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|} \neq l_{2}
\end{aligned}
$$

. (qietg) : example.

$$
d^{\sim}(x, y)=\left\{\begin{array}{cl}
0 & x=y \\
1+d(x, y) & x \neq y
\end{array}\right.
$$

$$
\begin{aligned}
d(x, y) & =\|x-y\|=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}} \\
& <x, y>=\sum_{i=1}^{n} x_{i} \cdot y_{i}
\end{aligned}
$$

A^: :

$$
N\left(x_{0}, Y\right)=\left\{x: x \in R^{n}, d\left(x, x_{0}\right)=\left\|x-x_{0}\right\|<r\right\}
$$

${ }^{3}$

$$
\begin{aligned}
& \left|x-x_{0}\right|<r \\
& -r<x-x_{0}<r \\
& x_{0}-r<x<x_{0}+r \\
& x \in] x_{0}-r, x_{0}+r[
\end{aligned}
$$

. ba ll

$$
\begin{gathered}
B(x, r)=\left\{x: x \in R^{n}: d(x, y)=\left\|x-x_{0}\right\| \leqslant r\right\}-\operatorname{datell} \text { os } 1 \sqrt{2} \\
N(x, r) \subseteq B(x, r)
\end{gathered}
$$

. M

$$
\exists N\left(x_{0}, r\right) \subseteq M \underset{N(3,1.5)>]_{2}, ~ x_{0}, \perp \rightarrow M}{M] 2.5,3.51 \subseteq M}
$$

 $x_{0} \in M$ i
$M \perp$ ○ $N\left(x_{0}, r\right)$ ， $\forall x_{0} \in M, \exists N\left(x_{0}, r\right) \subseteq M \quad(1)$
$\theta \neq M \subseteq R^{n} \quad$ 准 ن

$$
\begin{aligned}
& R^{n} \mid M \text {. } \\
& M^{c} \text { क } 4 \text { s. }
\end{aligned}
$$

 －slov！

$\phi \neq M \subseteq R^{n}$ 次 ：adildabill $\sqrt{6}$ x_{0} ل لأر x_{0} is M $\exists N\left(x_{0}, r\right) \subseteq M \xrightarrow{\Longrightarrow}$ Mふ̈blo x_{0} ．M M° برنز

$$
\begin{aligned}
& M=] 1,2] \\
& \left.M^{\circ}=\right] 1,2[
\end{aligned}
$$

$$
t \Leftrightarrow
$$

$$
M=M^{\circ}
$$

\therefore (f) $\theta \neq M \subseteq R^{n}$:

据
H. b. $\forall N\left(x_{0}, r\right)$:

$$
N\left(x_{0}, r\right) \cap M-\left\{x_{0}\right\} \neq \varnothing
$$

, $N\left(x_{0}, r\right)-\left\{x_{0}\right\} \cap M \neq 0$
ol $\left.N\left(x_{0}, r\right) \cap M \neq \ll x_{0}\right\}$

\qquad

$$
\begin{aligned}
& \text {] } \frac{3}{2} \cdot \frac{5}{2}[\quad 21,1 \text { s. } \\
& \text { - }] \frac{3}{2} \cdot \frac{5}{2}\left[\cap \left[0,1^{2}[\cup\{2\} \backslash\{2\}=\theta\right.\right. \\
& \text { - }] \frac{1}{2}, \frac{7}{2}\left[\cap \left[0,1[\cup\{2\} \backslash\{2\}=] \frac{1}{2}, \mid[\neq \varnothing\right.\right.
\end{aligned}
$$

T

$\theta \neq M \subseteq R^{n}$ 泣

$$
\begin{aligned}
\forall N\left(x_{0}, r\right): & N\left(x_{0}, r\right) \cap M \neq \varnothing \\
& N\left(x_{0}, r\right) \cap M^{c} \neq \varnothing \quad,
\end{aligned}
$$

$\theta \neq M \subseteq R^{n}$ 准: ies |ll|chill $\sqrt{9}$

$$
\forall M\left(x_{0}, r\right): N\left(x_{0}, r\right) \cap M \neq \infty
$$

M \bar{M}
.年

$$
\exists N\left(x_{0}, r\right): N\left(x_{0}, r\right) \cap M=\left\{x_{0}\right\}
$$

quan

- V) juir á es J5
!
نوَلم is in

$$
M \text { का }
$$

$\exists N\left(x, x_{0}\right): M \subseteq N\left(x, x_{0}\right)$

$$
\text { Kalim } \alpha-A L \text { salih, } 0 l \alpha-A L d \alpha \alpha \alpha+i
$$

-syria math -
$4 \sqrt{3}$

- ط
: R R^{n}.

$$
\begin{aligned}
f: N^{*} & \longrightarrow R^{n} \\
m & \longmapsto f(m)=x_{m}
\end{aligned}
$$

$\left\{x_{n}\right\}_{m \in \mathbb{N}^{+}} \| j^{j}$
$\quad x_{m}=\left(x_{1 m}, x_{2 m^{\prime}}, x_{n m}\right)$

1) .
: $R^{\prime \prime}$ 人
$R^{n} \underline{0} x$ نَ

$$
\begin{aligned}
\forall \varepsilon>0, \exists n_{\varepsilon} \in N^{*} \quad, m \geqslant & n_{\varepsilon}:\left\|x_{m}-x\right\|^{s}<\varepsilon \\
& \left(\sum_{i=1}^{n}\left(x_{i m}-x_{i}\right)^{2}\right)^{\frac{1}{2}}<\varepsilon
\end{aligned}
$$

$$
\lim _{m \rightarrow \infty} x_{m}=x
$$

ونَّبَ كنـئُ
 من
$i=1 \ldots n \stackrel{n}{\Perp} x_{i} \dot{\sim} \in \mathbb{N}\left\{x_{i m}\right\}_{m \in H^{*}}$
$R^{n}{ }^{n}$ الإِبا

$$
\begin{gathered}
\forall \varepsilon>0, \exists n_{\varepsilon} \in \mathbb{N}^{*}, m \geqslant n_{\varepsilon}^{\prime \prime}\left\|x_{m}-x\right\|<\varepsilon \\
\quad:=\int_{m} \\
\left\|x_{m}-x\right\|=\left(\sum_{i=1}^{n}\left(x_{i m}-x_{i}\right)^{2}\right)^{\frac{1}{2}}<\varepsilon \\
\Rightarrow \sum_{i=1}^{n}\left(x_{i m}-x_{i}\right)^{2}<\varepsilon^{2}
\end{gathered}
$$

$$
\left(x_{1 m}-x_{1}\right)^{2}+\left(x_{2 m}-x_{2}\right)^{2}+\frac{\cdots+\left(x_{n m}-x_{n}\right)^{2}<\varepsilon^{2}, ~}{2}
$$

$$
\begin{aligned}
& \Rightarrow \quad\left(x_{i m}-x_{i}\right)^{2}<\varepsilon^{2} \quad(i=1-n) . \\
& \Rightarrow \quad\left|x_{i m}-x_{i}\right|<\varepsilon \quad(i=1-n) .
\end{aligned}
$$

$$
\begin{aligned}
& \forall \varepsilon>0, \exists n_{i \varepsilon} \quad, m \geqslant n_{i \varepsilon}:\left|x_{i n}-x_{i}\right|<\varepsilon \\
& \Rightarrow \lim _{m \rightarrow \infty} x_{i m}=x_{i} \quad(i=1 \ldots n)
\end{aligned}
$$

($i=1,2,-n$)

$$
\begin{aligned}
& \forall \varepsilon>0, \frac{\varepsilon}{\sqrt{n}}>0 \\
& \exists n_{i \varepsilon} \in N^{*}: m \geqslant n_{i \varepsilon} \\
& \left|x_{i m}-x_{i}\right|<\frac{\varepsilon}{\sqrt{n}} \\
& \left|x_{1 m}-x_{1}\right|<\frac{\varepsilon}{\sqrt{n}} \Rightarrow\left(x_{m}-x_{1}\right)^{2}<\frac{\varepsilon^{2}}{n} \\
& \left|x_{2 m}-x_{2}\right|<\frac{\varepsilon}{\sqrt{2}} \Rightarrow\left(x_{2 m}-x_{2}\right)^{2}<\frac{\varepsilon^{2}}{n} . \\
& \left|x_{n m}-x_{n}\right|<\frac{\varepsilon}{\sqrt{n}} \Longrightarrow\left(x_{n m}-x_{n}\right)^{2}<\frac{\varepsilon^{2}}{n} \\
& \text { Nl: } \sum_{i=1}^{n}\left(x_{i m}-x_{i}\right)^{2}<n \frac{\varepsilon^{2}}{n}=\varepsilon^{2} \\
& \left(\sum_{i=1}^{n}\left(x_{i m}-x_{i}\right)^{2}\right)^{\frac{1}{2}}<\varepsilon \\
& \left\|x_{m}-x\right\|<\varepsilon \\
& \forall \varepsilon>0, \exists n_{\varepsilon}=\max \left(n_{1 \varepsilon}, n_{2 \varepsilon}, \cdots n_{n_{\varepsilon}}\right) \in N^{*} \\
& \text {, } m \geqslant n_{\varepsilon}: \\
& \left\|x_{m}-x\right\|<\varepsilon \Rightarrow \lim _{m \rightarrow \infty} x_{m}=x
\end{aligned}
$$

． 0 ． ．

的

$$
\lim _{m \rightarrow \infty}\left(x_{m} \mp y_{m}\right)=x \mp y
$$

 M نـ

$$
\begin{aligned}
& 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{5} \cdots \frac{1}{10} \\
& \text { [1] } \frac{1}{2}<\left[^{[2} \frac{13}{4}<\frac{1}{5}<\frac{1}{10}^{\text {[3 }}\right. \\
& \text {; }
\end{aligned}
$$

[$x_{m K}$]
 -
$R^{n}{ }^{n}$ في
: إذ

$$
\forall \varepsilon>0, \exists n_{\varepsilon} \in N^{*}: m_{1} l \geqslant n_{\varepsilon}:\left\|x_{m}-x_{l}\right\|<\varepsilon
$$

os she
-

$$
\begin{aligned}
& \forall \varepsilon>0, \frac{\varepsilon}{2}>0, \exists n_{\varepsilon} \in \mathbb{N}^{*}: \\
& \left\|x_{m}-x_{l}\right\|=\left\|x_{m}-x+x-x_{l}\right\| \\
& \leqslant\left\|x_{m}-x\right\|+\left\|x_{l}-x\right\| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}
\end{aligned}
$$

．
 －
 at or

a）\quad ）

$$
S \subseteq \bigcup_{i \in I} \bar{u}_{i}
$$

 $i \in I$ ，

$$
\bigcup_{j=1}^{r} u_{j} \subseteq \bigcup_{i \in \mathrm{I}} u_{i}
$$

(An

- أُبَ
 -

$$
\begin{align*}
\alpha_{1} \in A & , \exists u_{1}^{\prime} \in \bigcup_{i \in I} u_{i}: \alpha, \in u_{i}^{\prime} \\
a_{2} \in A & \vdots \exists u_{2}^{\prime} \in \cup u_{i}: \alpha_{2} \in u_{2}^{\prime} \\
& \vdots
\end{align*}
$$

U متّاa A A

 syrid mathe.. .

تَّليل 4 تُّه
वup

． 1 化
．$二 厶$.
：
نَّ لمن مفتوتا و غيرنا

$$
\begin{aligned}
& u \cap v=\theta \\
& u \cup v=S
\end{aligned}
$$

s v－

 ．الجو

مبرهنا（دونا برهان）：

$$
\begin{gathered}
\left.S_{1}=\right] 0,1[V] 3,5[\quad: j l e \\
u=] 0,1[\\
V=] 3.5[
\end{gathered}
$$

$$
\left.\left.\left.\left.S_{2}=\right] 0.1\right]-\left[0 . \frac{1}{2}\right]=\right] \frac{1}{2}, 1\right]
$$

$$
(u \cup v=s, ~ u \cap v=\infty) \text { لـِمَفـد }
$$

ون

$$
S_{3}=[0,1] \cup[1,3]=[0.3]
$$

. S_{3}
$\left(n^{\circ}\right): R^{n}, \rho$ quaid abiel le

$$
L=\{x+t(y-x): \quad: t \in[0,1]\}
$$

فإذ

$$
x_{1}, x_{2}, x_{3}, \cdots x_{m}
$$

x_{m}, x_{1}

هـ

S

(R^{n}. !
 إنا": الإثبا

\& R_{1}^{n}.

$$
\begin{aligned}
& S \neq R^{n} \\
& S \neq \varnothing
\end{aligned}
$$

Getor R^{n} IS
إ5ا كا
or $R^{n} \backslash S$
إذاكانت S كمالةَ

- $R^{n} \backslash[S] \cup[S]=R^{n}$
- $R^{n} \backslash[S] \cap_{n}^{n}[S]=\varnothing$
- R^{n} لا lin $^{n} \backslash[S],[S]$ vils

$$
\Rightarrow \quad R^{n^{h}}
$$

$\rightarrow 000=1 \sim 1$ \}
:

$$
\forall \varepsilon>0, \exists \delta>0,0<_{s}\left\|x-x_{0}\right\|<\delta
$$

$$
\Rightarrow|f(x)-A|<\varepsilon
$$

$f: S \subseteq R^{n} \longrightarrow R \quad$ ~ . S 〕qu $\lim _{x \rightarrow x_{0}} f(x)=A$ ن
x_{0} is

$$
\lim _{m \rightarrow \infty} f\left(x_{m}\right)=A \text { ومنتار }
$$

$$
\begin{aligned}
f: S \subseteq R^{n} & \longrightarrow R \\
g: T \subseteq R^{n} & \longrightarrow R
\end{aligned}
$$

$S \cap T$, ولتك

$$
\begin{aligned}
f+g: S \cap T \subseteq R^{n} & \longrightarrow R \\
x & \longmapsto(f+g)(x)=f(x)+g(x) \\
f: g: S \cap T \subseteq R^{n} & \longrightarrow R \\
x & \longmapsto(f \cdot g)(x)=f(x) \cdot g(x) \\
\frac{f}{g}: S \cap T \backslash\{x: g(x)=0\} & \longrightarrow R \\
x & \longmapsto \frac{f}{g}(x)=\frac{f(x)}{g(x)}
\end{aligned}
$$

:

$$
\begin{aligned}
f: & S \\
g: & \subseteq R^{\prime \prime} \longrightarrow R \\
& \simeq R^{\prime \prime} \longrightarrow R \\
& \lim _{x \rightarrow x_{0}} f(x)=A \quad, \lim _{x \rightarrow x_{0}} g(x)=B \\
& \lim _{x \rightarrow x_{0}}(f+g)(x)=A+B
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& \lim _{x \rightarrow x_{0}} f(x)=A \Leftrightarrow \\
& \forall \varepsilon>0, \frac{\varepsilon}{2}>0, \exists \delta_{1}>0:
\end{aligned} \\
& 0<\left\|x-x_{0}\right\|<\delta_{1} \\
& \Rightarrow|f(x)-A|<\frac{\varepsilon}{2} \\
& \lim _{x \rightarrow x_{0}} g(x)=B \Longleftrightarrow \forall \varepsilon>0, \frac{\varepsilon}{2}>0, \exists \delta_{2}>0 \text {. } \\
& 0<\left\|x-x_{0}\right\|<\delta_{2} \\
& \Rightarrow|g(x)-B|<\frac{\varepsilon}{2} \\
& |f(x)-A+g(x)-B| \leqslant|f(x)-A|+|g(x)-B|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

$$
|(f+g)(x)-(A+B)|<\varepsilon
$$

$$
\forall \varepsilon>0, \exists \delta=\min \left(\delta_{1}, \delta_{2}\right)>0 \text {. }
$$

$$
0<\left\|x-x_{0}\right\|<\delta
$$

$$
\Rightarrow|(f+g)(x)-(A+B)|<\varepsilon
$$

$$
\Rightarrow \lim _{x \rightarrow x_{0}}(f+g)(x)=A+B
$$

$\delta=\min \left(\delta_{1}, \delta_{2}\right)$,

$$
\delta=\max \left(\delta_{1} \delta_{2}\right) \text { 此 }
$$

مبر هن:

$$
g: T \subseteq R^{n} \longrightarrow R
$$

$$
\lim _{x \rightarrow x_{0}} g(x)=B \quad,
$$

$$
\lim _{x \rightarrow x_{0}} \frac{1}{g(x)}=\frac{1}{B}
$$

$$
g \neq 0, B \neq 0
$$ البر

$$
\lim _{x \rightarrow x_{0}} g(x)=B
$$

.

$$
\begin{aligned}
\forall \varepsilon>0, \exists \delta>0, & 0<\left\|x-x_{0}\right\|<\delta \\
& \Rightarrow|g(x)-B|<\varepsilon
\end{aligned}
$$

\qquad

$$
\begin{aligned}
& \left|\frac{1}{g(x)}-\frac{1}{B}\right|=\left|\frac{B-g(x)}{g(x) \cdot B}\right|<\frac{\varepsilon}{|B| \cdot|g(x)|} \\
& |B|>|B-g(x)+g(x)| \\
& \leqslant|B-g(x)|+|g(x)| \\
& ||B-g(x)|<\varepsilon \\
& <\varepsilon+|g(x)| \\
& \Rightarrow \quad|B|<\varepsilon+|g(x)| \\
& |B|-\varepsilon<|g(x)| \\
& \Rightarrow \frac{1}{g(x)}<\frac{1}{|B|-\varepsilon} \\
& \left|\frac{1}{g(x)}-\frac{1}{B}\right|<\frac{\varepsilon}{|B| \cdot|g(x)|} \quad \therefore \text { טillid } t \text {. } \\
& {\left[\frac{1}{G(x)}<\frac{1}{|B|-\varepsilon} ; H<\frac{\varepsilon}{|B|} \cdot \frac{1}{|B|-\varepsilon}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \left|\frac{1}{g(x)}-\frac{1}{B}\right|<\frac{1}{2}+\frac{1}{\frac{|B|}{2}}=\frac{1}{|B|}=\varepsilon^{\prime} \\
& \forall \varepsilon^{\prime}>0, \exists \delta>0,0<\left\|x-x_{0}\right\|<\delta \\
& \Rightarrow\left|\frac{1}{9}-\frac{1}{B}\right|<\varepsilon^{\prime} \\
& \Rightarrow \lim _{x \rightarrow x_{0}} \frac{1}{g}=\frac{1}{B}
\end{aligned}
$$

$$
\begin{aligned}
& f: R^{2}-[(0,0)] \rightarrow R \\
& (x, y) \longrightarrow f(x, y)=\frac{x^{3} \cos y}{x^{2}+y^{2}} \\
& \lim _{(x, y) \rightarrow(0,0)} f(x, y)=0
\end{aligned}
$$

$$
\begin{aligned}
& \forall \varepsilon>0, \exists \delta>0,0<\|(x, y)-(0,0)\|<\delta \\
& \Rightarrow\left|\frac{x^{3} \cos y}{x^{2}+y^{2}}\right| \\
& \left|\frac{x^{3} \cos y}{x^{2}+y^{2}}\right| \leqslant \frac{\left|x^{3}\right|}{x^{2}+y^{2}} \quad(|\cos y|\langle |=\leqslant \mid) \\
& =\frac{x^{2}|x|}{x^{2}+y^{2}} \\
& x^{2}<x^{2}+y^{2} \\
& \frac{x^{2}|x|}{x^{2}+y^{2}}<\frac{x^{2}+y^{2}}{x^{2}+y^{2}} \cdot|x|=|x|=\sqrt{x^{2}}<\sqrt{x^{2}+y^{2}} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \forall \varepsilon>0, \exists \delta=\varepsilon>0,0<\|(x, y)-(0,0)\|<\delta \\
& \Rightarrow\left|\frac{x^{3} \cos y}{x^{2}+y^{2}}\right|<\varepsilon
\end{aligned}
$$

8 ($\tilde{\sim}^{\omega}{ }^{2} 5,0=5$

$$
\begin{aligned}
& f: R^{2}-\{(0,0)\} \longrightarrow R \\
&(x, y) \longrightarrow f_{1}(x, y)=\frac{x \cdot y}{x^{2}+y^{2}} \\
& f_{2}(x, y)=\frac{\sin (x, y)}{x^{2}+y^{2}}
\end{aligned}
$$

ا 0.0) is

- $f_{1}(x, y)=\frac{x \cdot y}{x^{2}+y^{2}}$

$$
\begin{aligned}
& {\left[\frac{1}{n}, \frac{1}{n}\right] \underset{n \rightarrow \infty}{ }(0,0)} \\
& {\left[\frac{1}{n} \cdot \frac{2}{n}\right] \underset{n \rightarrow \infty}{\longrightarrow}(0,0)}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} f\left(\frac{1}{n} \cdot \frac{1}{n}\right)=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}+\frac{1}{n^{2}}}=\frac{1}{2}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} f\left(\frac{1}{n} \cdot \frac{2}{n}\right)=\lim _{n \rightarrow \infty} \frac{\frac{2}{n^{2}}}{\frac{1}{n^{2}}+\frac{4}{n^{2}}}=\frac{2}{5}
$$

$$
\lim _{n \rightarrow \infty} f\left(\frac{1}{n}, \frac{2}{n}\right) \neq \lim _{n \rightarrow \infty} f\left(\frac{1}{n} \cdot \frac{2}{n}\right)^{n^{2}} \circlearrowleft \forall l
$$

$$
\text { - } \begin{aligned}
& f_{2}(x, y)=\frac{\sin (x \cdot y)}{x^{2}+y^{2}} \\
&\left\{\left(\frac{1}{n}, \frac{1}{n}\right)\right] \xrightarrow[n \rightarrow \infty]{ }:(0,0) \\
& {\left[\left(\frac{1}{n}, \frac{2}{n}\right)\right] \xrightarrow[n \rightarrow \infty]{ }(0,0) } \\
& f\left(\frac{1}{n} \cdot \frac{1}{n}\right)=\frac{\sin \frac{1}{n^{2}}}{\frac{2}{n^{2}}} \\
& \lim _{n \rightarrow \infty} f\left(\frac{1}{n} \cdot \frac{1}{n}\right)=\lim \frac{\sin \frac{1}{n^{2}}}{2 \frac{1}{n^{2}}}=\frac{1}{2} \\
& f\left(\frac{1}{n}, \frac{2}{n}\right)=\frac{\sin \frac{2}{n^{2}}}{\frac{5}{n^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} f\left(\frac{1}{n}, \frac{2}{n}\right)=\lim _{n \rightarrow \infty} \frac{\sin \frac{2}{n^{2}}}{\frac{5}{2} \cdot \frac{2}{n^{2}}}=\frac{2}{5} \\
& \lim _{n \rightarrow \infty} f\left(\frac{1}{n}, \frac{1}{n}\right) \neq \lim _{n \rightarrow \infty} f\left(\frac{1}{n}, \frac{2}{n}\right) \\
& (x, y) \rightarrow(0,0) \quad \text { bi }
\end{aligned}
$$

$000-2 \sim 1$ 自
 :

$$
\begin{aligned}
& \forall \varepsilon>0, \exists \delta>0 .\left\|x-x_{0}\right\|<\delta \\
& \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon
\end{aligned}
$$

,

مبرهنآ

$$
f: S \subseteq R^{n} \longrightarrow R
$$

ولتَ
قا

\qquad
$x_{0} \in S$ ن $\dot{5} \cdot \dot{i}$ أ
这
(

* أ أِ

$$
f: S \subseteq R^{n} \longrightarrow R \quad: \leq
$$

$$
x_{0} \in S \cap S^{\prime}
$$

((

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) \Leftrightarrow x_{0}
$$

الإِبَاسَتُ:
x.

$$
\begin{aligned}
& \forall \varepsilon>0, \exists \delta>0,\left\|x-x_{0}\right\|<\delta \\
& \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|{ }_{1}<\varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& 0<\left\|x-x_{0}\right\| \quad \text {, } x \neq x_{0} \\
& \text { ~j! } \\
& \forall \varepsilon>0, \exists \delta>0,0<\left\|x-x_{1}\right\|<\delta \\
& \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon \\
& \lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)
\end{aligned}
$$

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)
$$

$$
\begin{aligned}
\forall \varepsilon>0, \exists \delta>0: 0 & <\left\|x-x_{0}\right\|<\delta \\
& \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon
\end{aligned}
$$

$$
\left|f(x)-f\left(x_{0}\right)\right|=\left|f\left(x_{0}\right)-f\left(x_{0}\right)\right|=0<\varepsilon
$$

a

$$
\begin{aligned}
\forall \varepsilon>0, \exists \delta>0 & ,\left\|x-x_{0}\right\|<\delta \\
& \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon
\end{aligned}
$$

:
qes quä x_{0}, x_{0} 2

$$
\lim _{x \rightarrow x_{0}} f(x)=f \lim _{x \rightarrow x_{0}} x=f\left(x_{0}\right)
$$

त程

$$
\text { (oرog = }=
$$

$$
f: s \subseteq R^{n} \longrightarrow R \quad \text { (n }
$$

$$
(\text {) }
$$

(
كنئز كَ
الالابَاتْ:
x. (Q .

$$
\exists \varepsilon>0, \forall \delta>0,\left\|\begin{array}{l}
\left\|x-x_{0}\right\| \\
\left.\left.\left(x_{0}\right)\right)_{0}\right)
\end{array}<\delta \Rightarrow\right\| f(x)-f\left(x_{0}\right)<\varepsilon
$$

$$
\left|f(x)-f\left(x_{0}\right)\right|=\left|f\left(x_{0}\right)-f\left(x_{0}\right)\right|=0>\varepsilon
$$

$0<\varepsilon \in$
هنا يناقض
$x_{0}=\frac{1}{2}$

أهـ $x_{0} \leq{ }^{\circ}$
: بر هنه
x_{0} q躬
نا
x_{0} aballtor $g_{0} T \subseteq R^{n} \longrightarrow R$
: $x_{0} \in S \cap T$
1)

$$
\begin{aligned}
f+g: S \cap T & \subseteq R^{n} \\
x & \longmapsto(f+g)(x)=f(x)+g(x)
\end{aligned}
$$

2)

$$
\begin{aligned}
f . g: S \cap T & \subseteq R \\
x & \longmapsto R \\
& \longmapsto(f \cdot g)(x)=f(x) \cdot g(x)
\end{aligned}
$$

3) $\frac{f}{g}: S \cap T$

$$
\begin{aligned}
& g(x)=0] \longrightarrow R \\
& x \longmapsto\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}
\end{aligned}
$$

4)

$$
\begin{aligned}
& x \longmapsto(g \circ f)(x)=g(f(x))
\end{aligned}
$$

$$
\alpha \in R \quad, \quad x \cdot y \in S, R^{n} \leq
$$

Lis $f(x)<\alpha f(y)$

$$
\exists B \in S \quad, f(B)=\alpha
$$

$f: S \subseteq R^{n} \longrightarrow R$
تَ
$f\left(\right.$ 利 $^{\text {(}}$ مدوردة من الإكا
$f($ f $)$ (مرودة من الأدندا
. نـه A $x \in f$ ن of 15 : isedl $|f(x)|<$ s
$\tau_{C} \cdot \log \operatorname{lon}$

$$
f: S \subseteq R^{n} \longrightarrow R \quad \text { تريف: الاسترارالنتط }
$$

$$
\begin{aligned}
\forall \varepsilon>0, \exists \delta(\varepsilon)>0, & \left\|x_{1}-x_{2}\right\|<\delta \\
& \Rightarrow\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\varepsilon \\
& \forall x_{1}, x_{2} \in S \text { s. } \dot{y},
\end{aligned}
$$

$f: S \subseteq R^{n}$
-
 : O S S ,
S (
(2
تشإگّ :
F كَ
-

$$
\begin{aligned}
& f:[-1,1] \longrightarrow R \\
& x \longmapsto f(x)=x^{2}+x-1 \\
& \text { هل الد اله }
\end{aligned}
$$

الداله .

$$
\begin{aligned}
& f(x, y)=\left\{\begin{array}{l}
x \cdot y \operatorname{Ln}\left(x^{2}+y^{2}\right):(x, y) \neq(0,0): \text { Jh. } \\
0.0(x, y)=(0,0) \\
(0,0)
\end{array}\right)
\end{aligned}
$$

$$
\left.8 \lim _{8 \rightarrow 0} z \operatorname{Ln} z=0\right\}
$$

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{(x, y) \rightarrow(0,0)} x \cdot y \cdot \operatorname{Ln}\left(x^{2}+y^{2}\right)
$$

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim \frac{x \cdot y}{x^{2}+y^{2}}\left(x^{2}+y^{2}\right) \operatorname{Ln}\left(x^{2}+y^{2}\right)
$$

$$
=\lim _{(x, y) \rightarrow(0,1)} \frac{x \cdot y}{x^{2}+y^{2}} \cdot \lim _{(x, y) \rightarrow(0,0)}\left(x^{2}+y^{2}\right) \operatorname{Ln}\left(x^{2}+y^{2}\right)
$$

$$
f(x, y)=\sim \begin{array}{ll}
\frac{x^{3} \cdot \cos y}{x^{2}+y^{2}}:(x, y) \neq(0,0): \text { J! } \\
0 & :(x, y)=(0,0)
\end{array}
$$

$$
\begin{aligned}
& \operatorname{lin} \frac{x \cdot y}{x^{2}+y^{2}} \cdot 0=0 \\
& f(0,0)=0 \\
& \Rightarrow \lim _{(x, y) \longrightarrow(0,0)} f(x, y)=0=f(0,0) \\
& (0,0) \text { (0) }
\end{aligned}
$$

. I\&

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} f(x, y)= & \lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} \cos y}{x^{2}+y^{2}} \\
& =0=f(0,0) \\
& =f
\end{aligned}
$$

$$
f(x, y)= \begin{cases}\frac{e^{x \cdot y}-1}{x^{2}+y^{2}} & :(x, y) \neq(0,0) \\ 0 & :(x, y)=(0,0)\end{cases}
$$

l (no gro.

。

$$
f(x, y)=\left\{\begin{array}{ll}
f: R^{2} \longrightarrow R & : 1 J 16 \\
\frac{\left(x^{2}+(y-2)^{2}+1\right)^{\frac{1}{2}}-1}{x^{2}+(y-2)^{2}}:(x, y)=(0,2)
\end{array}:\right.
$$

$$
\lim _{(x, y) \rightarrow(0,2)} f(x, y)=\frac{1}{2}
$$

آبِّت
(0,2 (2

$$
\begin{gathered}
\forall \varepsilon>0, \exists \delta>0,0<\|(x, y)-(0,2)\|<\delta: J-1 \\
\Rightarrow\left|f(x, y)-\frac{1}{2}\right|<\varepsilon \\
(\sqrt[d]{ } \mid \sqrt{d}-1) x^{2}+(y-2)^{2}=\alpha \\
\|(x, y)-(0,2)\|=\|x, y-2\|=\sqrt{x^{2}+(y-2)^{2}}=\sqrt{a} \\
\left|f(x, y)-\frac{1}{2}\right|=\left|\frac{(a+1)^{\frac{1}{2}}-1}{a}-\frac{1}{2}\right|
\end{gathered}
$$

$$
=\left|\frac{-(+1+\alpha)+2 \sqrt{a+1}-1}{2 a}\right|:-(1+a)=-1-a,
$$

$$
\begin{aligned}
1:=\left|\frac{(1+a)-2 \sqrt{a+1}+1}{2 a}\right| & :|-z|=|z| \text {-albal|a-al } \mid, \\
(\sqrt{1+a}-1)^{2} & =(1+a)-2 \sqrt{a+1}+1 \quad \text { b- }
\end{aligned}
$$

$$
\text { (} \sqrt{1+\alpha}
$$

$$
=\frac{(\sqrt{1+a}-i)^{2}}{2 a}
$$

$$
\Rightarrow a-2 \alpha^{2}-\dot{a}-\dot{a}=\frac{(1+a-1)^{2}}{2 a(\sqrt{1+a}+1)^{2}}
$$

$\rightarrow \infty=\frac{a}{2(\sqrt{1+a}+1)^{2}}<\frac{a}{2}<\frac{\delta^{2}}{2}$

,

$$
\varepsilon=\frac{\delta^{2}}{2}
$$

》) $\quad \forall \varepsilon>0, \exists \delta=\sqrt{2 \varepsilon}>0,\|(x, y)-(0,2)\|<\delta$
$\geqslant \Rightarrow\left|f(x, y)-\frac{1}{2}\right|<\varepsilon$
7

2. $\quad(x, y) \rightarrow(0,2)$

Sabbagh

$$
\begin{array}{r}
f: R^{2}-[(0,0)] \longrightarrow R \\
f(x, y)=\frac{e^{x y}-1}{x^{2}+y^{2}}
\end{array}
$$

أبُ
(x, y)

仿

$$
f: R^{2} \longrightarrow R
$$

$$
\text { \% } 3
$$

$$
f(x, y)=<\sum^{0} \frac{e^{x y}-1}{x^{2}+y^{2}}
$$

$$
\because(x, y)=(0,0)
$$

$$
\because(x, y) \neq(0,0)
$$

الد

$$
\begin{aligned}
& y=0 \quad: \quad \text { : ال } \\
& \lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{x \rightarrow 0} f(x, 0)=0
\end{aligned}
$$

$$
\begin{aligned}
& (x, y) \longrightarrow(0,0)
\end{aligned}
$$

$$
\begin{aligned}
& f, g: R^{2} V\{(0,0)\} \rightarrow R \\
& f(x, y)=\left(x^{2}+y^{2}\right) \sin \frac{1}{x y} \\
& g(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}} \quad: 4 \text { U. }
\end{aligned}
$$

$$
\lim f(x, y)=0
$$

$$
(0,0) \stackrel{(x}{\circ}
$$

$$
\therefore J=1
$$

: ال التِ

$$
\begin{aligned}
& \forall \varepsilon>0, \exists \delta>0,0<\|(x ; y)-(0, \dot{0})\|<\delta \\
& \sqrt{x^{2}+y^{2}}<\delta \\
& \Rightarrow\left|\left(x^{2}+y^{2}\right) \sin \frac{1}{x \cdot y}-0\right|<\varepsilon \\
& \left|\left(x^{2}+y^{2}\right) \sin \frac{1}{x \cdot y}\right|=\left|x^{2}+y^{2}\right|\left|\sin \frac{1}{x \cdot y}\right| \\
& \leqslant x^{2}+y^{2}<\delta^{2}=\varepsilon
\end{aligned}
$$

$$
\begin{align*}
\forall \varepsilon>0, \exists \delta=\sqrt{\varepsilon}>0,\|(x, y)-(0,0)\|<\delta \\
\Rightarrow|f(x)-(0,0)|<\varepsilon \\
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0
\end{aligned} \begin{aligned}
\left\{\left(\frac{1}{n}, \frac{1}{n}\right)\right\} & \rightarrow(0,0) \quad:\left.\right|_{s} \\
\left\{\left(\frac{2}{n}, \frac{1}{n}\right)\right\} & \rightarrow(0,0) \\
g\left(\frac{1}{n}, \frac{1}{n}\right) & =0 \lim _{n \rightarrow \infty} g\left(\frac{1}{n}, \frac{1}{n}\right)=0 \\
& \Rightarrow \lim _{n \rightarrow \infty} \tag{0,0}
\end{align*}
$$

$$
g\left(\frac{2}{n} \cdot \frac{1}{n}\right)=\frac{\frac{4}{n^{2}}-\frac{1}{n^{2}}}{\frac{4}{n^{2}}+\frac{1}{n^{2}}}=\frac{3}{5}
$$

$$
\Rightarrow \lim _{n \rightarrow \infty} 9\left(\frac{2}{n}, \frac{1}{n}\right)=\frac{3}{5}
$$

$$
\begin{aligned}
& \because(x, y)=(0,0) \\
& \therefore(x, y) \neq(0,0)
\end{aligned}
$$

$\frac{x^{4}}{x^{2}+y^{2}}-v$ व

$$
\forall \varepsilon>0, \exists \delta=\sqrt{\varepsilon}>0,\|(x, y)-(0,0)\|<\delta
$$

$$
\Rightarrow|f(x, y)-f(0,0)|<\varepsilon
$$

$$
f(x, y)=<\frac{x^{2} \cdot y^{2}}{x^{2}+y^{4}}:(x, y)=(0,0)
$$

برهن أث الدالهة f oــرة

$$
\begin{aligned}
& \forall \varepsilon>0, \exists \delta>0 .\|(x, y)-(0,0)\|<\delta \\
& \Rightarrow|f(x, y)-f(0,0)|<\varepsilon \\
& |f(x, y)-f(0,0)|=\left|\frac{x^{4}}{x^{2}+y^{2}}-0\right| \\
& =\frac{x^{2}}{x^{2}+y^{2}} \cdot x^{2}<\frac{x^{2}+y^{2}}{x^{2}+y^{2}} \cdot x^{2} \\
& <x^{2}+y^{2}<\delta^{2}=\varepsilon \\
& x^{2}+y^{2}<\delta^{2} \quad \text { 少 }
\end{aligned}
$$

$$
\begin{aligned}
& y=\alpha x \\
& \lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{x \rightarrow 0} f(x, \alpha x) \\
& =\lim _{x \rightarrow 0} \frac{\alpha^{2} x^{3}}{x^{2}+\alpha^{4} x^{4}} \\
& =\lim _{x \rightarrow 0} \frac{\alpha^{2} x}{1+\alpha^{4} x^{4}}=0 \Rightarrow f(0,0)=0
\end{aligned}
$$

- (0,0 (0 (

نأن نأن نمطة

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim \frac{y^{4^{x}}}{2 y^{4}}=\frac{1}{2} \neq f(0,0)=0
$$

$$
f(x, y)=\ln \left(x^{2}+y^{2}\right)
$$

:الى

$$
\begin{aligned}
& h: R^{2} \longrightarrow R \\
& (x, y) \longmapsto x^{2}+y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& g: R^{+*} \\
& z \underset{R^{+k} L \operatorname{Ln}}{\longrightarrow} \mathrm{~L}, \mathrm{G}
\end{aligned}
$$

$$
\begin{aligned}
& R^{2} \backslash[(0,0)] \xrightarrow{h} R^{+\star} \xrightarrow{g} R \\
& \text { - } R^{2} \mid[0,0] \text { Lle } f=g 0 \mathrm{~h}
\end{aligned}
$$

$$
f_{2}(x, y)=<\begin{aligned}
& x \cdot y \cdot \operatorname{Ln}^{\prime}\left(x^{2}+y^{2}\right):(x, y) \neq(0,0) \\
& 0 \quad
\end{aligned} \quad \because(x, y)=(0,0)
$$

برهنا استراربا عن 0 0 0

$$
f_{1}(x, y)=x \cdot y \cdot \ln \left(x^{2}+y^{2}\right)
$$

$\left.R^{2} \backslash[0,0]\right]_{1}$
, (0,0) (
R^{2},

Sabbagh
$f: R^{2}$

$$
f(x, y)=\sin x \cdot y
$$

R ${ }^{2}$
أَنْ تركِب

$$
h: R^{2} \longrightarrow R
$$

$$
(x, y) \longmapsto h(x, y)=x \cdot y
$$

.

$$
\begin{aligned}
& g: R \longrightarrow R \\
& z \longmapsto \sin z
\end{aligned}
$$

$$
\begin{aligned}
& (x, y) \longmapsto z \longmapsto \sin z \\
& f: g o h: R^{2} \longrightarrow R \\
& (x, y) \longmapsto \sin (x, y)
\end{aligned}
$$

解（sso ：
3
9000－～～～
3

$$
f: D \subseteq R^{\prime \prime} \longrightarrow R \quad \text { ufl: } \because \stackrel{1}{2}
$$

$$
\lim _{h \rightarrow 0} \frac{f\left(C_{1}+h_{1}, C_{2}, \ldots \ldots, c_{n}\right)-f\left(C_{1}, C_{2}, \ldots, c_{n}\right)}{h}
$$

$$
D_{1} F(c) \text { of } F_{x_{1}}(c) \text { ol } \frac{\partial f}{d x_{1}}(c) \text { ونرز }
$$

C Cbla x_{2}

$$
\begin{aligned}
& \frac{d F}{d x_{2}}(c)=\lim _{h \rightarrow 0} \frac{f\left(c_{1}, c_{2}+h, c_{3}, \ldots \ldots c_{h}\right)-f\left(c_{1}, c_{2} \ldots c_{h}\right)}{h} \\
\therefore=1,2 \ldots n & \frac{d F}{d x_{i}}(c)=\lim _{h \rightarrow 0} \frac{f\left(c_{1}, c_{2}, \ldots \ldots c_{1}+h, \ldots, c_{n}\right)-f\left(c_{1}, \ldots c_{n}\right)}{h}
\end{aligned}
$$

Cu ．

Tl，$f_{x}: D^{\circ} \subseteq R^{n} \longrightarrow R$ ：

$$
\frac{d}{d x_{1}} F_{x_{1}}=\frac{d}{d x_{1}} \cdot \frac{d F}{d x_{1}}(c)=\frac{d^{2} F}{d x_{1}^{2}}
$$

الم
$F 〕$ 量偣
C Cabal

وساوكـ با بلا

$$
\begin{aligned}
\frac{d}{d x_{1}} F_{x_{1}} & =\lim _{h \rightarrow 0} \frac{f_{x_{1}}\left(C_{1}+h, C_{2}, \ldots . C_{n}\right)-f_{x_{1}}\left(C_{1}, C_{2} \ldots C_{h}\right)}{h} \\
\frac{d}{d x_{2}} F_{x_{2}}(C) & =\frac{d}{d x_{2}} \frac{d F}{d x_{1}}(C)=\frac{d_{1}^{2} F}{d x_{2} d q_{2} d x_{1}}=\left(f_{x_{1}}\right)_{x_{2}}=f_{x_{1}, x_{2}} \\
f_{x_{1} x_{2}} & =\lim _{h \rightarrow 0} \frac{f_{x_{1}}\left(C_{1}, C_{2}+h, \ldots . C_{n}\right)-f_{x_{1}}\left(C_{1}, C_{2}, \ldots C_{n}\right)}{h}
\end{aligned}
$$

$f: R^{2} \rightarrow R \quad: \quad:{ }^{2}$
$(x, y) \longmapsto f(x, y)$

$$
\frac{d^{m} F}{d x^{m}}, \frac{d^{m} F}{d x^{m-1} d y}, \frac{d^{m} F}{d x^{m-2} d y^{2}}, \cdots \cdots, \frac{d^{m} F}{d x d y^{m-1}}
$$

$$
\cdot \frac{d^{m} F}{d y^{m}}
$$

$\Rightarrow \frac{d^{m} F}{d x^{m}} \cdot \frac{d^{m} F}{d y^{m}}$ تسمـيـ الd
$:$:

$$
\frac{d^{m} F}{d x^{2} \lambda y^{m-i}}: i=1 \quad m-1
$$

$$
\begin{gathered}
f_{x}(x, y), f_{y}(x, y), f_{x y}(x, y), f_{y x}(x, y), \\
f_{x x}(x, y), f_{y y}(x, y) \\
f_{x}(x, y)=3 x^{2} y^{5} \\
f_{x y}(x, y)=15 x^{2} y^{4}
\end{gathered}
$$

$$
f_{x x}(x, y)=6 x y^{5}
$$

$$
\begin{aligned}
& f_{y}(x, y)=5 x^{3} y^{4} \\
& f_{y x}(x, y)=15 x^{2} y^{4} \\
& f_{y y}(x, y)=20 x^{3} y^{3}
\end{aligned}
$$

$$
f_{x y}(x, y)=f_{y x}(x, y) \text { giog }
$$

$$
\begin{aligned}
& f: R^{2} \longrightarrow R \\
& f(x, y)=\longleftarrow \frac{x^{2}}{x^{2}+y^{2}}:(x, y) \neq(0,0) .
\end{aligned}
$$

$f_{y x}(0,0)$, $f_{x y}(0,0)$ أو $f_{x}(x, y), f_{y}(x, y), f_{x}(0,0), f_{y}(0,0), \notin$,

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}
$$

($h, 0$)

$$
\begin{gathered}
\quad=\lim _{h \rightarrow 0} \frac{\frac{1}{h^{2}}-0}{h}=0 \\
f_{x}(x, y)=\frac{f}{d x}(x, y)=\frac{y^{2}\left(x^{2}+y^{2}\right)-2 x\left(x y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{-x^{2} y^{2}+y^{4}}{\left(x^{2}+y^{2}\right)^{2}} \\
& f_{x}(x, y)=0 \quad:(x, y)=(0,0) \\
& f_{x}(x, y)=<\frac{-x^{2} y^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{2}}:(x, y) \neq(0,0) \\
& f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0,0+h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0}{h^{2}-0} \frac{h}{h}=0 \\
& f_{y}(x, y)=\frac{2 x y\left(x^{2}+y^{2}\right)-2 y\left(x y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{2 x^{3} y}{\left(x^{2}+y^{2}\right)^{2}} \\
& f_{y}(x, y)=\begin{array}{ll}
0 & :(x, y)=(0,0) \\
\frac{2 x^{3} y}{\left(x^{2}+y^{2}\right)^{2}} & :(x, y) \neq(0,0)
\end{array}
\end{aligned}
$$

 أكا إذاط

$$
(0, h) \text { ir } \quad f_{x y}(0,0)=\lim _{h \rightarrow 0} \frac{f_{x}(0,0+h)-f_{x}(0,0)}{h}
$$

$$
\begin{gathered}
=\lim _{h \rightarrow 0} \frac{h^{4}-0}{h^{4}}=\lim _{h \rightarrow 0} \frac{1}{h}=\infty \\
f_{y x}(0,0)=\lim _{h \rightarrow 0} \frac{f_{y}(h, 0)-f_{y}(0,0)}{h} \\
f_{y x}(0,0)=\lim _{h \rightarrow 0} \frac{\frac{1}{h}^{h^{4}}-0}{h}=0 \\
\left.f_{y x}(0,0) \neq f_{x y}(0,0)=1\right)
\end{gathered}
$$

$$
f: \curvearrowleft \subset \subseteq R^{2} \longrightarrow R \quad: \text { a }
$$

$C \in D^{\circ}$,

$$
f_{x y}(x)=f_{y x}(c) \text { s }
$$

C 2 الـئتَا

\& Lunos

Jevi)

$$
\begin{array}{r}
\left.\begin{array}{rl}
\frac{d F}{d u}(C)= & \left.\lim _{h \rightarrow 0}^{0} \frac{f\left(C_{1}+h, C_{2}, C_{3}, \ldots, C_{n}\right)-f\left(C_{1}, C_{2}, \ldots . C_{n}\right)}{h}\right) \\
& =\frac{d F}{d x}(C) \\
\underbrace{}_{C+h}=\left(C_{1}, C_{2}, \ldots . ., C_{h}\right)+h(1,0,0, \ldots, 0) \\
=\left(C_{1}+h, C_{2}, C_{3}, \ldots . C_{n}\right)
\end{array}\right)
\end{array}
$$

$$
: R^{n} \leq \text { eq }
$$

$$
e_{1}(1,0, \ldots \ldots 0), e_{2}(0,1,0
$$

$$
\ldots . . . e_{n}(0,0,0, \ldots . .1)
$$

$f: \overparen{R} \longrightarrow R$

$\frac{d F}{d u}(0,0)$ 和 $\alpha^{2}+\beta^{2}=1$ us．$U=(\alpha, \beta)$

$$
\begin{aligned}
& \|u\|=\|(\alpha, \beta)\| \\
& =\sqrt{\alpha^{2}+\beta^{2}}=1 \\
& \frac{\partial F}{\partial u}(0,0)=\lim _{h \rightarrow 0} \frac{f(c+h u)-f(c)}{h} \\
& C=(0,0): \quad: \quad 0 \text { الم } \\
& h u=h(\alpha, \beta)=(h \alpha, h \bar{\beta}) \\
& \frac{d F}{d u}(0 ; 0)=\lim _{h \rightarrow 0} \frac{f(h \alpha, h B)-f(0,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{h^{3} \alpha B^{2}}{h^{2} \alpha^{2}+h^{2} B^{2}}-0}{h} \\
& =\frac{\alpha \beta^{2}}{\alpha^{2}+B^{2}}=\frac{\alpha B^{2}}{1}=\alpha B^{2} \\
& \begin{aligned}
f_{0} \\
R T(x)=\|x\|^{2} \quad: C \in R^{2}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \cdots \quad\|u\|=\left\|\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \ldots \ldots, \frac{1}{\sqrt{n}}\right)\right\| \\
& =\sqrt{\frac{1}{n}+\frac{1}{n}+\cdots+\frac{1}{n}}
\end{aligned}
$$

\qquad

$$
\begin{aligned}
& f(C)=\|C\|^{2}=C_{1}^{2}+C_{2}^{2}+\cdots+C_{n}^{2}=\sum_{i=1}^{n} C_{i}^{2} \\
& \frac{d F}{d u}(C)=\lim _{n \rightarrow 0} \sum_{i=1}^{n} C_{i}^{2}+2 \frac{h}{\sqrt{n}} \sum_{i=1}^{n} C_{i}+h_{i}^{2}-\sum_{i=1}^{n} C_{i}^{2}
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0}\left(\frac{2}{\sqrt{n}} \sum_{i=1}^{n} C_{i}+h\right)=\frac{2}{\sqrt{n}} \sum_{i=1}^{n} C_{i}
$$

$$
\begin{aligned}
& C+h u=\left(C_{1}, C_{2}, \ldots \ldots C_{n}\right)+\left(\frac{h}{\sqrt{n}}, \frac{h}{\sqrt{n}}, \cdots \ldots, \frac{h}{\sqrt{n}}\right) . \\
& =\left(C_{1}+\frac{h}{\sqrt{n}}, C_{2}+\frac{h}{\sqrt{n}}, \ldots . ., C_{n}+\frac{h}{\sqrt{n}}\right) \\
& \begin{aligned}
f(C+h u) & =\|C+h u\|^{2}=\left(C_{1}+\frac{h}{\sqrt{n}}\right)^{2}+\left(C_{2}+\frac{h}{\sqrt{n}}\right)^{2} \\
& +\ldots
\end{aligned} \\
& \begin{array}{l}
+\cdots \cdots+\left(C_{n}+\frac{n}{\sqrt{n}}\right)^{2} \\
\cdots C_{1}^{2}+C_{2}^{2}+\cdots+C_{n}+\frac{h}{\sqrt{n}}\left(C_{1}+C_{2}+\cdots+C_{n}\right)
\end{array} \\
& +\left(\frac{\left.\frac{h^{2}}{n}+\frac{h^{2}}{n}+\cdots \cdots+\frac{h^{2}}{n}\right)}{n\left(\frac{h^{2}}{n}+\frac{h^{2}}{n}+\cdots+\frac{h^{2}}{n}\right)}\right. \\
& =h^{2} \\
& =\sum_{i=1}^{n} C_{i}^{2}+2 \frac{n}{\sqrt{n}} \sum_{i=1}^{n} C_{i}+n^{2}
\end{aligned}
$$

\qquad

000- - 000

$$
f: D \subseteq R^{\prime \prime} \longrightarrow R
$$

$$
(\alpha, b)=c \in D^{\circ} \text {, }
$$

$(1 \wedge$ bear $\sim J) f\left(a+h, b_{0}+k\right)-f(a, b)=A h+B k+\mu(h, k) \sqrt{h^{2}+k^{2}}$

$$
\lim _{(h, k) \rightarrow(0,0)} \mu(h, k)=0 \quad-i(5,
$$

كنرئن oَ
(a,b)
$k=0$ vijá:A

$$
f(a+h, b)-f(a, b)=A h+\mu(h, k) \sqrt{h^{2}}
$$

نa

$$
\begin{aligned}
& \frac{f(a+h, b)-f(a, b)}{h}=A \mp \mu(h, k) \\
& \lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}=A+\dot{\omega}_{l \lim _{m}} \mu=0 \\
& \Rightarrow A=\frac{d-F}{d x}(a, b)
\end{aligned}
$$

$h=0$ ن
b:0ll

$$
\frac{\partial F}{\partial y}(\alpha, b)=B
$$

$:$ 电

- $f(a+h, b+k)$

$$
\text { r) } \begin{aligned}
& f(a, b)=h f_{x} \\
& \lim _{(h, k) \rightarrow(0,0)}=0
\end{aligned}
$$

$$
\begin{aligned}
& \because f_{y}(a, b)+\mu \sqrt{h^{2}+k^{2}}
\end{aligned}
$$

$$
\|(h, k)\|^{2}
$$

في المُطَة (0.0)

$$
f(x, y)=<\begin{array}{ll}
0 & :(x, y)=(0,0) \\
\frac{x y^{2}}{x^{2}+y^{2}} & :(x, y) \neq(0,0) \\
& :(\sqrt{\prime})
\end{array}
$$

$$
\begin{gathered}
f(a+h, b+h)=f(h, k)=\frac{h k^{2}}{h^{2}+k^{2}} \\
f(a, b)=f(0,0)=0
\end{gathered}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\frac{0}{h^{2}+0}-0}{h}=0
\end{aligned}
$$

$$
\mu=\frac{h k^{2}}{\left(h^{2}+k^{2}\right)\left(\sqrt{h^{2}+k^{2}}\right)}
$$

$$
\begin{aligned}
f_{y}(0,0)= & \lim _{h \rightarrow 0} \frac{f(0,0+h)-f(0,0)}{h}=0 \\
& \frac{h k^{2}}{h^{2}+k^{2}}-0=0+0+\mu \sqrt{h^{2}+k^{2}} \\
& \mu=\frac{h k^{2}}{\left(h^{2}+k^{2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

$$
\mu=\frac{h^{3}}{\left(2 h^{2}\right)^{\frac{3}{2}}}=\frac{1}{(2)^{\frac{3}{2}}}
$$

: 0.0 (0 (
(a, b)

$$
\begin{gathered}
f: R^{2} \longrightarrow R \\
f(x, y)=x^{2}+2 x y \\
f(a+h, b+k)=(a+h)^{2}+2(a+h)(b+k) \\
=\alpha^{2}+2 a h+h^{2}+2 a b^{\prime}+2 a k+2 h b+2 h k \\
f(a, b)=\alpha^{2}+2 a b \\
f(\alpha+h, b+k)-f(\alpha, b)=2 a h+h^{2}+2 a k+2 h b+2 h k \\
f_{x}(x, y)=2 x+2 y \Rightarrow f_{x}(\alpha, b)=2 a+2 b \\
f_{y}(x, y)=2 x \Rightarrow f_{y}(\alpha, b)=2 a
\end{gathered}
$$

$$
\begin{gathered}
2 a h+h^{2}+2 a k+2 h b+2 h k=2 a h+2 b h+2 a k+\mu \sqrt{h^{2}+k^{2}} \\
h^{2}+2 h k=\mu \sqrt{h^{2}+k^{2}} \\
\mu=\frac{h^{2}+2 h k}{\sqrt{h^{2}+k^{2}}}
\end{gathered}
$$

$$
\lim _{(h, k) \rightarrow(0,0)} \mu \stackrel{?}{=} 0
$$

$$
\begin{aligned}
\forall \varepsilon>0, \exists \delta>0,0 & <\|(h, k)\|<\delta \\
& \Rightarrow|\mu-0|<\varepsilon
\end{aligned}
$$

$$
\frac{h^{2}+2 h k}{\sqrt{h^{2}+k^{2}}}=\frac{h^{2}}{\sqrt{h^{2}+k^{2}}}+\frac{2 h k}{\sqrt{h^{2}+k^{2}}}<\frac{h^{2}+K^{2}}{\sqrt{h^{2}+k^{2}}}+\frac{h^{2}+k^{2}}{\sqrt{h^{2}+k^{2}}}
$$

$2 h K \leqslant h^{2}+K^{2} \dot{L}$ 识

$$
\Rightarrow h^{2}-2 h k+k^{2} \geqslant 0
$$

$$
\Rightarrow \quad(h-k)^{2} \geqslant 0
$$

$$
\begin{gathered}
\frac{h^{2}+2 h k}{h^{2}+k^{2}}<\frac{2\left(h^{2}+k^{2}\right)}{\sqrt{h^{2}+k^{2}}}=2 \sqrt{h^{2}+k^{2}}=2 \delta . \\
=\varepsilon
\end{gathered}
$$

ونهن :

$$
\begin{aligned}
& \forall \varepsilon>0, \exists \delta=\frac{\varepsilon}{2}>0,0<\|(h, k)\|<\delta \\
& \Rightarrow|\mu-0|<\varepsilon
\end{aligned}
$$

\qquad
,
\qquad

$$
S \dot{0} \dot{\Delta}\left|{ }^{-}\right|
$$

il

i

Pr
(4) Uutern

$$
(11) \widehat{\sim}(\bar{x}(\underline{2})
$$

$\therefore 2$ cole |l
.

$$
\begin{aligned}
& \underset{\substack{\text { as } \\
\text { aicin }^{2}}}{f_{0} D} \subseteq R^{n} \longrightarrow R \\
& C \in R^{\star} \\
& \|(h, k)\|<\delta \\
& \text { : } \quad(h, k) \in R^{2}
\end{aligned}
$$

$$
\begin{aligned}
& f_{x}(a, b) \quad{ }^{W} f_{y}(a, b) \\
& \lim _{(h, k) \rightarrow(0,0)} \lambda_{0}=0
\end{aligned}
$$

$$
d_{c} F: D \subseteq R^{2} \longrightarrow R
$$

مسْشَق فرِشـيه : لر

$$
(h, K) \longmapsto d_{c} F(h, K)=h f_{x}(\alpha, b)+K f_{y}(\alpha, b)
$$

(h, K) (

$$
f: R^{2} \longrightarrow R
$$

$$
d_{c} F(x-c) \text { أوبـد }
$$

$$
C=(0,-2)
$$

$$
f(x, y)=x^{3}+4 x y^{2}+2 x y \sin x
$$

$$
\begin{gathered}
x-c=(x, y)-(0,-2)=(x, y+2) \\
d_{(0,-2)}(x-c)=d_{(0,2)} F_{1}(x, y+2)=x f_{x}(0,-2)+(y+2) f_{y}(0,-2) \\
f_{x}(x, y)=3 x^{2}+4 y^{2}+2 y \sin x+2 x y \cos x \\
f_{x}(0,-2)=16 \\
f_{y}(x, y)=8 x y+2 x \sin x \\
f_{y}(0,-2)=0 \\
d_{(0,-2)} F(x-c)=16 x+0=16 x
\end{gathered}
$$

$f_{0} D \subseteq R^{n}$
次

$\|h\|<\delta$ متو

$$
\begin{aligned}
& A_{1}, A_{1}, \ldots . . A_{n} \in R \quad \text { من } \\
& f(C+h)-f(c)=\sum_{i=1}^{n} A_{i} h_{i}+\lambda\|h\| \\
& \lim _{\text {i }} \lambda=0
\end{aligned}
$$

$h_{1} \neq 0, h_{2}=h_{3}=\cdots=h_{n}=0 \quad: \operatorname{lig}_{1} A_{1}$ ．
L！$\quad f(C+h)=f\left(C+h g_{1}, C_{2}, C_{3}, \ldots, C_{n}\right)$

$$
f(c+h)-f(c)=\sum_{i=1}^{n} A_{i} h_{i}+\lambda\|h\|
$$

$$
f\left(C_{1}+h_{1}, C_{2}, \ldots, \ldots, C_{n}\right)-f\left(C_{1}, C_{2}, \ldots, C_{n}\right)
$$

$$
=A_{1} h_{1}+\lambda\left\|h_{1}\right\|
$$

$$
\begin{aligned}
& \lim _{h_{1} \rightarrow 0} \frac{f\left(c_{1}+h_{1}, c_{2}, c_{3}, \ldots . c_{n}\right)-f\left(c_{1}, c_{2}, \ldots, c_{n}\right)}{h_{1}}=A_{1} \mp \lim _{\left\|h_{1}\right\| \rightarrow 0}^{i} \\
& \lim _{\left\|h_{1}\right\| \rightarrow 0}=0 \quad: \text { 的 } \\
& \frac{\partial F}{\partial x_{1}}(c)=A_{1} \\
& \frac{d F}{d x_{i}}(c)=A_{i} \\
& \text { و; و و } \\
& j \neq i \quad h_{j} \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& / f(c+h) \quad f(c) \text { : }{ }^{n} \\
& f(c+h)-f(c)=\sum_{i=1}^{n} h_{i} f_{x_{i}}(c)+\lambda\|h\| \\
& \lim _{\|h\| \rightarrow 0}^{i} \lambda=0 \text { b, }
\end{aligned}
$$

(A A b:ل $d_{c} f: D \subset R^{n} \rightarrow R$ لَكت

-

$$
\begin{aligned}
& d_{x_{i}}: R^{n} \longrightarrow R \\
& x \longmapsto d x_{i}(x)=x_{i} \\
& h \longmapsto d h_{i}(x)=h_{i} \\
& d_{i} F(h)=\sum_{i=1}^{n} h_{i} F_{x_{i}}(c) \\
& d_{c} F(h)=\sum_{i=1}^{n} f_{x_{i}}(c) d x_{i}(h) \\
& \Rightarrow d_{c} F=\sum_{i=1}^{n} \frac{d F}{d x_{i}}(c) d x_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{:}{\dot{0}: l_{0}} R_{0}^{3} \longrightarrow R \\
& (x, y, z) \longmapsto f(x, y, z)=e^{-(x+y+z)}
\end{aligned}
$$

: ال

$$
\begin{gathered}
x-c=(x, y, z)-(0,0,0)=(x, y, z) \\
d_{c} F(x-c)=d_{(0,0,0)}(x, y, z)=x f_{x}(0,0,0)+y f_{y}(0,0,0)+z f_{z}(0,0,0) \\
f_{x}(x, y, z)=-e^{-(x+y+z)}=f_{y}(x, y, z)=f_{z}(x, y, z) \\
f_{x}(0,0,0)=f_{y}(0,0,0)=f_{z}(0,0,0)=-1
\end{gathered}
$$

$$
d_{c} F(x, y, z)=-x-y-z
$$

$$
f: D \subseteq R^{n} \longrightarrow R_{0}\left(\wedge^{n}-x\right)
$$

$$
C \in D^{\circ}
$$

فإذا كانت

$$
\begin{gather*}
\|x-c\|<\delta \\
|f(x)-f(c)|<k\|x-c\|
\end{gather*}
$$ -

الإ بِبا

$$
\begin{aligned}
& h_{1} \cdot h_{2} \text {. } \\
& h_{n} \in R^{n}
\end{aligned}
$$

$$
\begin{aligned}
& f(c+h)-f(C)=\sum_{i=1}^{n} A_{i} h_{i}+\lambda\|h\| \\
& \lim _{\|h\| \rightarrow 0} \lambda_{1}=0 \\
& |f(c+h)-f(c)|=\left|\sum_{i=1}^{n} A_{i} h_{i}+\lambda\|h\|\right| \leqslant \sum_{i=1}^{n}\left|A_{i}\right|\left|h_{i}\right|+|\lambda|\left\|h_{1}\right\| \\
& \|h\|=\sqrt{h_{1}^{2}+h_{2}^{2}+\cdots+h_{n}^{2}}, \\
& \left|h_{i}\right| \leqslant\|h\| \\
& \leqslant\left[\sum_{i=1}^{n}\left|A_{i}\right|+|\lambda|\right]\|h\| \\
& \lim _{\|h\|} \lambda=0 \\
& \forall \varepsilon>0, \varepsilon=1 . \exists \delta_{\varepsilon}>0,0<\|h\|<\delta_{\varepsilon} \\
& \begin{array}{l}
|f(C+h)-f(C)| \leqslant\left[\sum_{i=1}^{n}\left|A_{i}\right|+|\lambda|\right] \| h| |<\left[\sum_{i=1}^{n}\left|A_{i}\right|+1\right]| | h \mid \\
K=\sum_{i=1}^{n}\left|A_{i}\right|+1 \quad, \quad C+h=X \quad l
\end{array} \\
& \begin{array}{l}
|f(c+h)-f(c)| \leqslant\left[\overrightarrow{\sum_{i=1}^{n}}\left|A_{i}\right|+|\lambda|\right] \| h\left|<\left[\sum_{i=1}^{n}\left|A_{i}\right|+\mid\right]\right||h|, \\
K=\sum_{i=1}^{n}\left|A_{i}\right|+1 \quad, \quad C h=X \quad
\end{array} \\
& \begin{array}{l}
|f(C+h)-f(C)| \leqslant\left[\sum_{i=1}^{n}\left|A_{i}\right|+|\lambda|\right] \| h| |<\left[\sum_{i=1}^{n}\left|A_{i}\right|+1\right]| | h \\
\quad K=\sum_{i=1}^{n}\left|A_{i}\right|+1 \quad, \quad C+h=X \quad L
\end{array}
\end{aligned}
$$

$$
|f(x)-f(c)|<k\|x-c\|
$$

$0<$ ang K K
$\underset{\sim}{\wedge} 0<\varepsilon=\min \left[\delta_{1} \cdot \delta_{2}\right]$

$$
\|h\|<\delta
$$

$$
|f(x)-f(y)|<k\|x-c\|
$$

$$
f: D \subseteq R^{\prime \prime} \longrightarrow R
$$

C L $C \in D^{\circ}$ 家 CLB=F : الإبٌ

$$
\begin{aligned}
\forall \varepsilon>0, \exists \delta>0, & \|x-c\|<\delta \\
& \Longrightarrow|f(x)-f(c)|<\varepsilon
\end{aligned}
$$

$$
\begin{aligned}
&\|x-c\|<\delta \Rightarrow|f(x)-\ddot{f}(c)|<k\|x-c\|<k \delta \\
&<k \frac{\varepsilon}{k}=\varepsilon
\end{aligned}
$$

$\delta \leqslant \frac{\varepsilon}{K} \quad$ صض
أكيـ "- f

$$
\begin{aligned}
& f: R^{2} \longrightarrow R \\
& f(x, y)=<\begin{array}{ll}
\frac{x}{y} & : y \neq 0 \\
0 & : y=0
\end{array}
\end{aligned}
$$

أبَ-

$$
\begin{gathered}
\forall \varepsilon>0, \varepsilon=\frac{1}{2}, \exists \delta>0,\|(x, y)-(0,0)\| \mid<\delta \\
\Rightarrow|f(x, y)-f(0,0)|<\varepsilon \\
x=y=\frac{\delta}{2} \quad \text { 位 }
\end{gathered}
$$

宛

