

Syria Math Team

البنى انجبرية المحاضرة 24-23

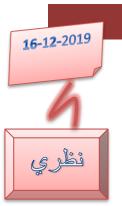
السنة النابية

تطلب من مكتبة ماهر للخدمات الطلابية - جانب بناء الفيزياء

للتواصل:

هاتف-واتساب: 0991921144

Syria Math 2nd year: محموعة الفيسبوك



◄ كَكُنُوسِ المائة: فادي أبوحرب

◄ المحاضة: 23-24 مالاخيرة

◄ عنوان المحاضة: المجموع المباش لزس

المجموع المباشر لزمر:

لتكن G زمرة ولتكن $H_1, H_2, ... H_n$ مجموعة من الزمر الجزئية الناظمية من الزمرة G نقول عن الزمرة G انها مجموع مباشر للزمر H_i حيث H_i حيث H_i

$$G = H_1 \times H_2 \times ... \times H_n$$
 ونكتب:

اذا تحقق الشرطين:

$$G = H_1 \times H_2 \times ... \times H_n = \{h_1, h_2, ..., h_n ; h_i \in H_i; 1 \le i \le n\}$$
 -1

$$(H_1, H_2, ..., H_i) \cap H_{i+1} = \langle e \rangle, i = 1, 2, ..., n-1-2$$

مبرهنة (دون برهان):

لتكن k,H زمرة جزئية ناظمية في الزمرة G الشروط التالية متكافئة:

$$G = k \times H - 1$$

يا كان $g \in G$ فإن g يكتب بصورة وحيدة بالشكل: -2

$$g = k.h$$
; $k \in K$, $h \in H$

مبرهنة: لتكن K, H زمر جزئية ناظمية في الزمرة G عندئذٍ:

$$K \times H \cong K \oplus H$$

البرهان:

$$\varphi: K \times H \longrightarrow K \oplus H$$

$$k.h \mapsto \varphi(k.h) = (k,h)$$

WhatsApp: 0991921144

ان φ تطبیق لان:

$$\begin{aligned} \forall kh, k_1h_1 \in K \times H \; ; kh &= k_1h_1 \Longleftrightarrow k = k_1 \; , \; h_1 = h_2 \\ & \Leftrightarrow (k,h) = (k_1,h_1) \\ & \Leftrightarrow \varphi(kh) = \varphi(k_1,h_1) \end{aligned}$$

ومنه $oldsymbol{arphi}$ تطبيق ومتباين.

:شاکل لان ϕ

$$\varphi(x,y) = \varphi(x).\varphi(y)$$

$$\varphi(x,y) = \varphi((k_1, h_1)(k_2 h_2)) = \varphi(k_1 k_2, h_1 h_2)$$

$$= (k_1, h_1)(k_2, h_2) = \varphi(k_1 h_1)\varphi(k_2 h_2) = \varphi(x).\varphi(y)$$

كما ان arphi غامر وضوحاً.

 $K imes H \cong K \oplus H$ ومما سبق نجد ان

:غندئذٍ فإن $k \cap H = < e >$ اذا كان $k \cap H = < k$ عندئذٍ فإن $k \cap H = < e >$

hk = kh; $\forall k \in K$, $h \in H$

النظرية الأساسية للزمر التبديلية المنتهية:

ليكن p عدداً أولياً و G زمرة تبديلية منتهية مرتبتها تقبل القسمة على العدد p عندئذٍ يوجد في g عنصراً مرتبته p

مبرهنة:

p كل زمرة تبديلية منتهية مرتبتها تقبل القسمة على العدد p تحوي زمرة جزئية مرتبتها

المبرهنة الأساسية للزمر التبديلية المنتهية:

- كل زمرة تبديلية منتهية عبارة عن مجموع مباشر لزمرة دوارة مرتبة كل منها قوة لعدد اولي علاوة على ذلك فإن هذا التمثيل وحيد بغض النظر عن ترتيب المضاريب.

مثال: لتكن G زمرة تبديلية منتهية مرتبتها (1176)

نحلله لعوامله الاولية 23.7².

$$G \cong H_1 \times H_2 \times ... \times H_n$$

$$\cong Z_1 n \times Z_2 n \times Z_3 n \cong Z_8 \times Z_3 \times Z_{45}$$

ان G تماثل واحداً فقط من المجاميع.

$$\cong Z_4 \times Z_2 \times Z_3 \times Z_{49}$$

$$\cong Z_2 \times Z_2 \times Z_2 \times Z_3 \times Z_{49}$$

 $\cong Z_2 \times Z_2 \times Z_2 \times Z_3 \times Z_7 \times Z_7$

تعريف ال P زمرة:

ليكن P عدداً أولياً, نقول عن الزمرة المنتهية G انها زمرة P- زمرة اذا كانت مرتبتها قوة للعدد P أي اذا كان

$$(G:1)=P^n \; ; \; n\in N$$

مثال

او

$$(G:1) = 9 = 3^2$$

$$(G:1) = 25 = 5^2$$

$$(G:1) = 8 = 2^3$$

مبرهنة:

اذا كانت G عبارة عن P زمرة

$$Z(G) \neq < e >$$

أي انها تحوي على الأقل عنصرين.

مبرهنة سيلوف الأولى:

لتكن G زمرة منتهية و P عدداً أولياً اذا كان P^k يقسم مرتبة الزمرة G عندئذٍ فإن الزمرة P^k تحوي زمرة جزئية واحدة على الأقل مرتبتها P^k

 $2^3.3^5.5^4.7$ مرتبتها G مرتبتها کتا

حسب سيلوف فإنه يوجد زمرة جزئية واحدة على الأقل مرتبتها 8

يوجد زمرة جزئية واحدة على الأقل مرتبتها 125

يوجد زمرة جزئية واحدة على الأقل مرتبتها625

يوجد زمرة جزئية واحدة على الأقل مرتبتها 7

يوجد زمرة جزئية واحدة على الأقل مرتبتها 4

يوجد زمرة جزئية واحدة على الأقل مرتبتها 2

يوجد زمرة جزئية واحدة على الأقل مرتبتها 9

يوجد زمرة جزئية واحدة على الأقل مرتبتها 25

يوجد زمرة جزئية واحدة على الأقل مرتبتها 8

يوجد زمرة جزئية واحدة على الأقل مرتبتها 5

يوجد زمرة جزئية واحدة على الأقل مرتبتها 3

2.3 = 6 بينما لاتخبرنا مبر هنة سيلوف عن زمرة جزئية مرتبتها

 2^3 نأخذ من مراتب G العدد بأكبر اس ونسميه P زمرة جزئية ومرتبتها هو الأس أي

 $k \geq 1$ حيث P^k اذا كان P حيث القسمة على العدد الأولي P اذا كان P^k

يقسم مرتبة الزمرة G و P^{k+1} لا يقسم مرتبة الزمرة G عندئذٍ أي زمرة جزئية من G مرتبتها P^k تسمى

G زمرة جزئية سيلوفية من -P

بالعودة للمثال السابق نجد ان:

أى زمرة مرتبتها 8 تسمى 2 - زمرة جزئية سيلوفية.

أي زمرة مرتبتها 625 تسمى 5 – زمرة جزئية سيلوفية.

أي زمرة مرتبتها 7 تسمى 7 – زمرة جزئية سيلوفية.

أي زمرة مرتبتها 243 تسمى 3- زمرة جزئية سيلوفية.

انتهت العاضرة

وقد نوه الدكتور عن انه:

1- يوجد سؤال خارجي (5 درجات من مرجع اجنبي).

2- يوجد سؤال تمرين للطلاب غير محلول (5 درجات).

3- يوجد سؤال عملي او اكثر.

انتهى المقرر... كل عام وانتم بخير.. بالتوفيق لجميع الطلاب..

إحصاد: ونام النبر، ولاء الأخضر، أبرار العالد